A discontinuous Galerkin formulation for classical and gradient plasticity - Part 1: Formulation and analysis

A discontinuous Galerkin formulation is developed and analyzed for the cases of classical and gradient plasticity. The model of gradient plasticity is based on the von Mises yield function, in which dependence is on the isotropic hardening parameter and its Laplacian. The problem takes the form of a variational inequality of the second kind. The discontinuous Galerkin formulation is shown to be consistent and convergent. Error estimates are obtained for the cases of semi- and fully discrete formulations; these mimic the error estimates obtained for classical plasticity with the conventional Galerkin formulation.

[1]  Peter Gudmundson,et al.  A unified treatment of strain gradient plasticity , 2004 .

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  Thomas Svedberg,et al.  An algorithm for gradient-regularized plasticity coupled to damage based on a dual mixed FE-formulation , 1998 .

[4]  S. Repin ERRORS OF FINITE ELEMENT METHOD FOR PERFECTLY ELASTO-PLASTIC PROBLEMS , 1996 .

[5]  K. Garikipati,et al.  A discontinuous Galerkin formulation for a strain gradient-dependent damage model , 2004 .

[6]  A. Needleman Computational mechanics at the mesoscale , 2000 .

[7]  W. Han,et al.  Plasticity: Mathematical Theory and Numerical Analysis , 1999 .

[8]  P. Steinmann,et al.  Theory and numerics of a thermodynamically consistent framework for geometrically linear gradient plasticity , 2001 .

[9]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[10]  Krishna Garikipati,et al.  A discontinuous Galerkin method for strain gradient-dependent damage: Study of interpolations and convergence , 2006 .

[11]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[12]  E. Aifantis On the Microstructural Origin of Certain Inelastic Models , 1984 .

[13]  Morton E. Gurtin,et al.  On the plasticity of single crystals: free energy, microforces, plastic-strain gradients , 2000 .

[14]  L. Evans Measure theory and fine properties of functions , 1992 .

[15]  Paul Steinmann,et al.  Theory and numerics of geometrically non-linear gradient plasticity , 2003 .

[16]  Morton E. Gurtin,et al.  A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin , 2004 .

[17]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[18]  B. D. Reddy,et al.  A discontinuous Galerkin formulation for classical and gradient plasticity. Part 2: Algorithms and numerical analysis , 2007 .

[19]  Hans Muhlhaus,et al.  A variational principle for gradient plasticity , 1991 .

[20]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[21]  Morton E. Gurtin,et al.  A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations , 2002 .

[22]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[23]  N. Fleck,et al.  Strain gradient plasticity , 1997 .

[24]  Elias C. Aifantis,et al.  The physics of plastic deformation , 1987 .

[25]  T. Hughes,et al.  Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .