Foxo transcription factors control regulatory T cell development and function.

[1]  R. DePinho,et al.  Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells , 2010, Nature Immunology.

[2]  Trey Ideker,et al.  A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates the B cell fate , 2010, Nature Immunology.

[3]  R. DePinho,et al.  Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells , 2010, The Journal of experimental medicine.

[4]  A. Rudensky,et al.  Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate , 2010, Nature.

[5]  E. Unanue,et al.  CTLA-4 suppresses the pathogenicity of self antigen–specific T cells by cell-intrinsic and cell-extrinsic mechanisms , 2010, Nature Immunology.

[6]  M. Linterman,et al.  Signals that influence T follicular helper cell differentiation and function , 2010, Seminars in Immunopathology.

[7]  Philippe P Roux,et al.  mTORC1-Activated S6K1 Phosphorylates Rictor on Threonine 1135 and Regulates mTORC2 Signaling , 2009, Molecular and Cellular Biology.

[8]  Caiying Guo,et al.  T cells require Foxo1 to populate the peripheral lymphoid organs , 2009, European journal of immunology.

[9]  Y. Wan,et al.  How diverse--CD4 effector T cells and their functions. , 2009, Journal of molecular cell biology.

[10]  S. Hedrick The cunning little vixen: Foxo and the cycle of life and death , 2009, Nature Immunology.

[11]  P. Worley,et al.  The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. , 2009, Immunity.

[12]  Linda Mark,et al.  Follicular helper T cells as cognate regulators of B cell immunity. , 2009, Current opinion in immunology.

[13]  A. Rudensky,et al.  Control of regulatory T cell lineage commitment and maintenance. , 2009, Immunity.

[14]  Daniel R. Beisner,et al.  Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. , 2009, Nature immunology.

[15]  K. Hogquist,et al.  Thymic emigration: Sphingosine‐1‐phosphate receptor‐1‐dependent models and beyond , 2009, European journal of immunology.

[16]  R. Flavell,et al.  An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. , 2009, Immunity.

[17]  R. Friedline,et al.  CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance , 2009, The Journal of experimental medicine.

[18]  Daniel R. Beisner,et al.  Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor , 2009, Nature Immunology.

[19]  P. Opolon,et al.  Prevention of autoimmunity and control of recall response to exogenous antigen by Fas death receptor ligand expression on T cells. , 2008, Immunity.

[20]  S. Hedrick,et al.  The Erk2 MAPK Regulates CD8 T Cell Proliferation and Survival1 , 2008, The Journal of Immunology.

[21]  V. Lazar,et al.  FOXO1 Regulates L-Selectin and a Network of Human T Cell Homing Molecules Downstream of Phosphatidylinositol 3-Kinase1 , 2008, The Journal of Immunology.

[22]  V. Kuchroo,et al.  TGF-β signaling in dendritic cells is a prerequisite for the control of autoimmune encephalomyelitis , 2008, Proceedings of the National Academy of Sciences.

[23]  D. Olive,et al.  ICOS Ligation Recruits the p50α PI3K Regulatory Subunit to the Immunological Synapse1 , 2008, The Journal of Immunology.

[24]  K. Shokat,et al.  T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR , 2008, Proceedings of the National Academy of Sciences.

[25]  A. Kulkarni,et al.  A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells , 2008, Nature Immunology.

[26]  J. Torres-Borrego,et al.  Prevalence and associated factors of allergic rhinitis and atopic dermatitis in children. , 2008, Allergologia et immunopathologia.

[27]  C. Benoist,et al.  The AKT–mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells , 2008, The Journal of experimental medicine.

[28]  K. Furuuchi,et al.  Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer , 2008, Nature Immunology.

[29]  Christophe Benoist,et al.  Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. , 2007, Immunity.

[30]  Diego G. Silva,et al.  Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA , 2007, Nature.

[31]  A. Rudensky,et al.  TGFβ signalling in control of T-cell-mediated self-reactivity , 2007, Nature Reviews Immunology.

[32]  T. Ludwig,et al.  Disruption of peripheral leptin signaling in mice results in hyperleptinemia without associated metabolic abnormalities. , 2007, Endocrinology.

[33]  T. Chatila,et al.  Regulatory T cell development in the absence of functional Foxp3 , 2007, Nature Immunology.

[34]  M. Levings,et al.  Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. , 2007, Blood.

[35]  Vincent C. Manganiello,et al.  Foxp3-dependent programme of regulatory T-cell differentiation , 2007, Nature.

[36]  Yonghong Xiao,et al.  FoxOs Are Lineage-Restricted Redundant Tumor Suppressors and Regulate Endothelial Cell Homeostasis , 2007, Cell.

[37]  Wei He,et al.  A FoxO–Smad synexpression group in human keratinocytes , 2006, Proceedings of the National Academy of Sciences.

[38]  Shimon Sakaguchi,et al.  Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. , 2006, International immunology.

[39]  D. Sabatini,et al.  Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. , 2006, Molecular cell.

[40]  S. Ziegler FOXP3: of mice and men. , 2006, Annual review of immunology.

[41]  A. Rudensky,et al.  An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires , 2006, Nature Immunology.

[42]  Jack T. Lin,et al.  TGF-β1 Uses Distinct Mechanisms to Inhibit IFN-γ Expression in CD4+ T Cells at Priming and at Recall: Differential Involvement of Stat4 and T-bet1 , 2005, The Journal of Immunology.

[43]  R. Loewith,et al.  Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive , 2004, Nature Cell Biology.

[44]  S. Hedrick,et al.  The acquired immune system: a vantage from beneath. , 2004, Immunity.

[45]  A. Singer,et al.  IL-7 Receptor Signals Inhibit Expression of Transcription Factors TCF-1, LEF-1, and RORγt , 2004, The Journal of experimental medicine.

[46]  M. Farrar,et al.  Distinct IL-2 Receptor Signaling Pattern in CD4+CD25+ Regulatory T Cells1 , 2004, The Journal of Immunology.

[47]  S. Anderson,et al.  Integration of Smad and Forkhead Pathways in the Control of Neuroepithelial and Glioblastoma Cell Proliferation , 2004, Cell.

[48]  W. Biggs,et al.  Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Li Li,et al.  Conversion of Peripheral CD4+CD25− Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3 , 2003, The Journal of experimental medicine.

[50]  G. Cooper,et al.  The epidemiology of autoimmune diseases. , 2003, Autoimmunity reviews.

[51]  A. Rudensky,et al.  Foxp3 programs the development and function of CD4+CD25+ regulatory T cells , 2003, Nature Immunology.

[52]  S. Szabo,et al.  The Transcription Factor T-bet Regulates Mucosal T Cell Activation in Experimental Colitis and Crohn's Disease , 2002, The Journal of experimental medicine.

[53]  René Hen,et al.  Reversal of Neuropathology and Motor Dysfunction in a Conditional Model of Huntington's Disease , 2000, Cell.

[54]  M. Greenberg,et al.  Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor , 1999, Cell.

[55]  G. Kelsoe,et al.  V(D)J recombinase activity in a subset of germinal center B lymphocytes. , 1997, Science.

[56]  J. Bluestone,et al.  Regulation of CTLA-4 expression during T cell activation. , 1996, Journal of immunology.

[57]  J. Marth,et al.  Distinct differentiative stages of CD4+CD8+ thymocyte development defined by the lack of coreceptor binding in positive selection. , 1995, Journal of immunology.

[58]  F. Ramsdell,et al.  gld/gld mice are unable to express a functional ligand for Fas , 1994, European journal of immunology.

[59]  S. Hedrick,et al.  In vivo and in vitro clonal deletion of double-positive thymocytes , 1992, The Journal of experimental medicine.

[60]  E. Palmer,et al.  An endogenous retrovirus mediating deletion of αβ T cells? , 1991, Nature.

[61]  Ming O. Li,et al.  Foxo: in command of T lymphocyte homeostasis and tolerance. , 2011, Trends in immunology.

[62]  Fritz Melchers,et al.  Checkpoints in lymphocyte development and autoimmune disease , 2010, Nature Immunology.

[63]  Shimon Sakaguchi,et al.  Regulatory T cells exert checks and balances on self tolerance and autoimmunity , 2010, Nature Immunology.

[64]  W. Paul,et al.  Heterogeneity and plasticity of T helper cells , 2010, Cell Research.

[65]  D. Mueller Mechanisms maintaining peripheral tolerance , 2010, Nature Immunology.

[66]  A. Rudensky,et al.  TGFbeta signalling in control of T-cell-mediated self-reactivity. , 2007, Nature reviews. Immunology.

[67]  Naděžda Brdičková,et al.  CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. , 2006, Nature.

[68]  Jack T. Lin,et al.  TGF-beta 1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4+ T cells at priming and at recall: differential involvement of Stat4 and T-bet. , 2005, Journal of immunology.

[69]  E. Palmer,et al.  An endogenous retrovirus mediating deletion of alpha beta T cells? , 1991, Nature.

[70]  A. Singer,et al.  IL-7 Receptor Signals Inhibit Expression of Transcription Factors TCF-1, LEF-1, and RORγt , 2004, The Journal of experimental medicine.