Dynamic chemical devices: Modulation of contraction/extension molecular motion by coupled-ion binding/pH change-induced structural switching

Dynamic chemical devices involve morphological or constitutional modifications in molecular or supramolecular systems, induced by internal or external physical or chemical triggers. Reversible changes in shape result in molecular motions and define motional dynamic devices presenting mechanical-like actions of various types. Suitably designed polyheterocyclic strands such as compounds 1–5 wrap into helical conformations. The binding of lead(II) ions to the coordination subunits contained in the strand leads to complete uncoiling and yields a polymetallic complex presenting a fully extended shape. The addition of a cryptand complexing agent that strongly binds lead(II) ions and releases them under protonation allows a reversible pH-modulation of lead(II) levels in the medium, which in turn induces coiling/uncoiling of the molecular strand. This system thus represents a motional dynamic device which performs a mechano-chemical process, realizing alternating extension/contraction motions triggered by ion binding. It achieves a linear motor-type of action of very large stroke amplitude fueled by ionic processes.

[1]  J. Lehn,et al.  Self-Assembly of Multicomponent Multimetallic Lead(II) Complexes of Cylindrical Architecture , 1999 .

[2]  Jean-Marie Lehn,et al.  Design of organic complexing agents Strategies towards properties , 1973 .

[3]  J. Lehn,et al.  CRYPTATES PART 13, INTRAMOLECULAR CATION EXCHANGE IN (3)CRYPTATES OF ALKALINE EARTH CATIONS , 1974 .

[4]  Young-A Lee,et al.  Smart Molecular Helical Springs as Tunable Receptors , 2000 .

[5]  Jean-Marie Lehn,et al.  Dynamic Combinatorial Chemistry and Virtual Combinatorial Libraries , 1999 .

[6]  Dan W. Urry,et al.  Molecular Machines: How Motion and Other Functions of Living Organisms Can Result from Reversible Chemical Changes , 1993 .

[7]  J. F. Stoddart,et al.  Supramolecular science : where it is and where it is going , 1998 .

[8]  E. Yashima,et al.  Switching of a macromolecular helicity for visual distinction of molecular recognition events. , 2001, Journal of the American Chemical Society.

[9]  Dario M. Bassani,et al.  Designed Self‐Generation of an Extended Helical Structure From an Achiral Polyheterocylic Strand , 1997 .

[10]  J. Lehn,et al.  Coordination Arrays: Synthesis and Characterisation of Rack‐Type Dinuclear Complexes , 1996 .

[11]  Yoshihito Osada,et al.  Stimuli-responsive polymer gels and their application to chemomechanical systems , 1993 .

[12]  S. Zimmerman,et al.  Complexation-Induced Unfolding of Heterocyclic Ureas: A Hydrogen-Bonded, Sheetlike Heterodimer , 2000 .

[13]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[14]  H. Buschmann Komplexierung von Blei(II) durch Azakronenether und Kryptanden in Methanol , 1985 .

[15]  J. Valentine,et al.  Protein Folding Special Issue , 1998 .

[16]  A. Fersht,et al.  Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. Behr,et al.  Molecular dynamics of .alpha.-cyclodextrin inclusion complexes , 1976 .

[18]  A. Göller,et al.  Torsional barriers in biphenyl, 2,2′-bipyridine and 2-phenylpyridine , 2000 .

[19]  C. Dietrich-Buchecker,et al.  Shuttles and muscles: linear molecular machines based on transition metals. , 2001, Accounts of chemical research.

[20]  K. T. Potts,et al.  Metal ion-induced self-assembly of functionalized 2,6-oligopyridines. 1. Ligand design, synthesis, and characterization , 1993 .

[21]  S. Howard Conformers, Energetics, and Basicity of 2,2‘-Bipyridine , 1996 .

[22]  J. Lehn,et al.  Cryptates. XVI. [2]-Cryptates. Stability and selectivity of alkali and alkaline-earth macrobicyclic complexes , 1975 .

[23]  G. R. Cousins,et al.  Molecular evolution: dynamic combinatorial libraries, autocatalytic networks and the quest for molecular function. , 2000, Current opinion in chemical biology.

[24]  Robert Langer,et al.  AB-polymer networks based on oligo(epsilon-caprolactone) segments showing shape-memory properties. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  K Namba,et al.  Molecular architecture of bacterial flagellum , 1997, Quarterly Reviews of Biophysics.

[26]  Takashi Kumasaka,et al.  Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling , 2001, Nature.

[27]  Rolf H. Berg,et al.  A Remarkably Efficient Azobenzene Peptide for Holographic Information Storage , 1999 .

[28]  P. Boyer,et al.  Energy, Life, and ATP (Nobel Lecture). , 1998, Angewandte Chemie.

[29]  John E Walker,et al.  ATP Synthesis by Rotary Catalysis (Nobel lecture). , 1998, Angewandte Chemie.

[30]  U. Schubert,et al.  Coordination Arrays: Tetranuclear Cobalt(II) Complexes with [2 × 2]‐Grid Structure , 1997 .

[31]  U. Schubert,et al.  Synthesis, structure, and properties of oligo-tridentate ligands; covalently assembled precursors of coordination arrays , 1997 .

[32]  J. Lehn,et al.  Synthesis, Structure, and Properties of Dinuclear and Trinuclear Rack‐Type RuII Complexes , 1995 .

[33]  J S Moore,et al.  Solvophobically driven folding of nonbiological oligomers. , 1997, Science.

[34]  W. Allison F1-ATPase: A Molecular Motor That Hydrolyzes ATP with Sequential Opening and Closing of Catalytic Sites Coupled to Rotation of Its γ Subunit , 1998 .