Water in the Martian regolith from OMEGA/Mars Express

Here we discuss one of the current reservoirs of water on Mars, the regolith and rocks exposed at the surface. This reservoir is characterized by the presence of H2O‐ and OH‐bearing phases that produce a broad absorption at a wavelength of ~3 µm in near‐infrared (NIR) reflectance spectra. This absorption is present in every ice‐free spectrum of the Martian surface obtained thus far by orbital NIR spectrometers. We present a quantitative analysis of the global distribution of the 3 µm absorption using the Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) imaging spectrometer that has been mapping the surface of Mars at kilometer scale for more than 10 years. Based on laboratory reflectance spectra of a wide range of hydrous minerals and phases, we estimate a model‐dependent water content of 4 ± 1 wt % in the equatorial and midlatitudes. Surface hydration increases with latitude, with an asymmetry in water content between the Northern and Southern Hemispheres. The surface hydration is compared to various parameters (albedo, dust, geological units, time, relative humidity, atmospheric water pressure, and in situ measurements performed by Phoenix and Curiosity) to constrain the nature of the reservoir. We conclude that the nature of the surface hydration of the Martian low latitudes is not adsorbed water but rather more tightly bound water molecules and hydroxyl groups in the structure of the materials of the near‐top surface. A frost‐related process best explains the implementation of water into and onto the first microns of the high‐latitude Martian regolith.

[1]  Yves Langevin,et al.  Mars surface thermal inertia and heterogeneities from OMEGA/MEX , 2014 .

[2]  J. Bell,et al.  Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission , 2014, 1403.4234.

[3]  E. Cloutis,et al.  Laboratory spectroscopic detection of hydration in pristine lunar regolith , 2014 .

[4]  T. Titus,et al.  Monitoring the Mars Polar Caps During Mars Years 24-28 , 2014 .

[5]  B. Schmitt,et al.  Transmission infrared spectra (2–25 μm) of carbonaceous chondrites (CI, CM, CV–CK, CR, C2 ungrouped): Mineralogy, water, and asteroidal processes , 2014 .

[6]  Jean-Baptiste Madeleine,et al.  Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds , 2013, 1310.1010.

[7]  M B Madsen,et al.  Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars , 2013, Science.

[8]  R. V. Morris,et al.  X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater , 2013, Science.

[9]  R. V. Morris,et al.  Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover , 2013, Science.

[10]  Anna Fedorova,et al.  Annual survey of water vapor vertical distribution and water–aerosol coupling in the martian atmosphere observed by SPICAM/MEx solar occultations , 2013 .

[11]  Andrew F. Cheng,et al.  The NEO (175706) 1996 FG3 in the 2–4 μm spectral region: Evidence for an aqueously altered surface , 2013 .

[12]  M. Wolff,et al.  Aphelion water‐ice cloud mapping and property retrieval using the OMEGA imaging spectrometer onboard Mars Express , 2012 .

[13]  Jean-Pierre Bibring,et al.  Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx , 2012 .

[14]  Alessandro Frigeri,et al.  DETECTION OF WIDESPREAD HYDRATED MATERIALS ON VESTA BY THE VIR IMAGING SPECTROMETER ON BOARD THE DAWN MISSION , 2012 .

[15]  Richard C. Quinn,et al.  Hydroxyl (OH) production on airless planetary bodies: Evidence from H+/D+ ion-beam experiments , 2012 .

[16]  M. Vincendon Mars surface phase function constrained by orbital observations , 2012, 1208.4518.

[17]  S. Maurice,et al.  Mars Odyssey neutron data: 1. Data processing and models of water‐equivalent‐hydrogen distribution , 2011 .

[18]  S. Maurice,et al.  Mars Odyssey neutron data: 2. Search for buried excess water ice deposits at nonpolar latitudes on Mars , 2011 .

[19]  Y. Shkuratov,et al.  Simulating OH/H2O formation by solar wind at the lunar surface , 2011 .

[20]  C. Verpoorter,et al.  Wide distribution and glacial origin of polar gypsum on Mars , 2011 .

[21]  D. Stillman,et al.  Dielectric signatures of adsorbed and salty liquid water at the Phoenix landing site, Mars , 2011 .

[22]  T. Encrenaz,et al.  Annual survey of water vapor behavior from the OMEGA mapping spectrometer onboard Mars Express , 2011 .

[23]  S. Douté,et al.  Winter and spring evolution of northern seasonal deposits on Mars from OMEGA on Mars Express , 2011 .

[24]  S. Murchie,et al.  New near‐IR observations of mesospheric CO2 and H2O clouds on Mars , 2011, 1103.3448.

[25]  T. Glotch,et al.  Investigation of the near-infrared spectral character of putative Martian chloride deposits , 2011 .

[26]  N Thomas,et al.  Seasonal Erosion and Restoration of Mars’ Northern Polar Dunes , 2011, Science.

[27]  D. Ming,et al.  Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars , 2010 .

[28]  B. Schmitt,et al.  Kinetics of water adsorption on minerals and the breathing of the Martian regolith , 2010 .

[29]  Elisa A. Hemmig,et al.  Microscopy analysis of soils at the Phoenix landing site, Mars: Classification of soil particles and description of their optical and magnetic properties , 2010 .

[30]  M. D. Dyar,et al.  Mechanisms for incorporation of hydrogen in and on terrestrial planetary surfaces , 2010 .

[31]  M. Mellon,et al.  Phoenix and MRO coordinated atmospheric measurements , 2010 .

[32]  R. Morris,et al.  Mineralogy of the Phoenix landing site from OMEGA observations and how that relates to in situ Phoenix measurements , 2010 .

[33]  B. Schmitt,et al.  Water sorption on martian regolith analogs: Thermodynamics and near-infrared reflectance spectroscopy , 2009 .

[34]  Lori M. Feaga,et al.  Temporal and Spatial Variability of Lunar Hydration As Observed by the Deep Impact Spacecraft , 2009, Science.

[35]  M. D. Dyar,et al.  Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1 , 2009, Science.

[36]  Nicolas Thomas,et al.  Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters , 2009, Science.

[37]  Roger N. Clark,et al.  Detection of Adsorbed Water and Hydroxyl on the Moon , 2009, Science.

[38]  D. Ming,et al.  H2O at the Phoenix Landing Site , 2009, Science.

[39]  F. Poulet,et al.  OMEGA long wavelength channel: Data reduction during non-nominal stages , 2009 .

[40]  O. Forni,et al.  A study of the properties of a local dust storm with Mars Express OMEGA and PFS data , 2009 .

[41]  Jean-Pierre Bibring,et al.  Yearly and seasonal variations of low albedo surfaces on Mars in the OMEGA/MEx dataset: Constraints on aerosols properties and dust deposits , 2009, 1103.3426.

[42]  R. Morris,et al.  The H2O and CO2 adsorption properties of phyllosilicate-poor palagonitic dust and smectites under martian environmental conditions , 2009 .

[43]  B. Schmitt,et al.  Strength of the H2O near-infrared absorption bands in hydrated minerals: Effects of measurement geometry , 2008 .

[44]  T. Encrenaz,et al.  OMEGA/Mars Express: South Pole Region, water vapor daily variability , 2008 .

[45]  B. Schmitt,et al.  Strength of the H2O near-infrared absorption bands in hydrated minerals: Effects of particle size and correlation with albedo , 2008 .

[46]  F. Poulet,et al.  Spectral variability of the Martian high latitude surfaces , 2008 .

[47]  Francois Forget,et al.  Fast and accurate estimation of solar irradiance on Martian slopes , 2008 .

[48]  D. Möhlmann The influence of van der Waals forces on the state of water in the shallow subsurface of Mars , 2008 .

[49]  M. M. Osterloo,et al.  Chloride-Bearing Materials in the Southern Highlands of Mars , 2008, Science.

[50]  M. Mellon,et al.  Apparent thermal inertia and the surface heterogeneity of Mars , 2007 .

[51]  Jean-Pierre Bibring,et al.  Hydration state of the Martian surface as seen by Mars Express OMEGA: 2. H2O content of the surface , 2007 .

[52]  J. Mustard,et al.  Estimating the water content of hydrated minerals using reflectance spectroscopy I. Effects of darkening agents and low-albedo materials , 2007 .

[53]  J. Mustard,et al.  Estimating the water content of hydrated minerals using reflectance spectroscopy II. Effects of particle size , 2007 .

[54]  J. Mustard,et al.  Hydration state of the Martian surface as seen by Mars Express OMEGA: 1. Analysis of the 3 μm hydration feature , 2007 .

[55]  Jean-Pierre Bibring,et al.  Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 1. Retrieval method , 2007 .

[56]  S. Douté,et al.  Observations of the south seasonal cap of Mars during recession in 2004–2006 by the OMEGA visible/near‐infrared imaging spectrometer on board Mars Express , 2007 .

[57]  T. Encrenaz,et al.  Water vapor mapping on Mars using OMEGA/Mars Express , 2007 .

[58]  D. Möhlmann,et al.  Investigation of the water sorption properties of Mars-relevant micro- and mesoporous minerals , 2006 .

[59]  J. Mustard,et al.  Quantifying absolute water content of minerals using near‐infrared reflectance spectroscopy , 2005 .

[60]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[61]  F. Forget,et al.  The effects of the martian regolith on GCM water cycle simulations , 2005 .

[62]  Alain Soufflot,et al.  The ground calibration setup of OMEGA and VIRTIS experiments: description and performances , 2005 .

[63]  M. Mellon,et al.  Mars low-latitude neutron distribution: Possible remnant near-surface water ice and a mechanism for its recent emplacement , 2005 .

[64]  Jean-Pierre Bibring,et al.  Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express , 2005, Science.

[65]  Pascal Rannou,et al.  Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model , 2004 .

[66]  François Poulet,et al.  OMEGA: Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité , 2004 .

[67]  Michael D. Smith The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer , 2002 .

[68]  Joshua L. Bandfield,et al.  Global mineral distributions on Mars , 2002 .

[69]  John F. Mustard,et al.  Near-Infrared Spectral Variations of Martian Surface Materials from ISM Imaging Spectrometer Data , 2000 .

[70]  Hugh H. Kieffer,et al.  Mars south polar spring and summer behavior observed by TES: Seasonal cap evolution controlled by frost grain size , 2000 .

[71]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[72]  John F. Mustard,et al.  Effects of Very Fine Particle Size on Reflectance Spectra of Smectite and Palagonitic Soil , 1999 .

[73]  Stephen R. Lewis,et al.  Improved general circulation models of the Martian atmosphere from the surface to above 80 km , 1999 .

[74]  G. Rossman,et al.  Water content of the Martian soil: Laboratory simulations of reflectance spectra , 1998 .

[75]  Robert M. Haberle,et al.  Modeling the Martian seasonal water cycle , 1997 .

[76]  W. Calvin Variation of the 3-μm absorption feature on Mars: observations over eastern Valles Marineris by the mariner 6 infrared spectrometer , 1997 .

[77]  A. Zent,et al.  Measurement of H2O adsorption under Mars-like conditions: Effects of adsorbent heterogeneity , 1997 .

[78]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[79]  Robert M. Haberle,et al.  A coupled subsurface‐boundary layer model of water on Mars , 1993 .

[80]  S. Erard,et al.  Results from the ISM experiment , 1989, Nature.

[81]  F. Fanale,et al.  Distribution and state of H2O in the high-latitude shallow subsurface of Mars , 1986 .

[82]  B. Jakosky The seasonal cycle of water on Mars , 1985 .

[83]  B. Jakosky The role of seasonal reservoirs in the Mars water cycle. I Seasonal exchange of water with the regolith. II - Coupled models of the regolith, the polar caps, and atmospheric transport , 1983 .

[84]  B. Jakosky The role of seasonal reservoirs in the Mars water cycle: II. Coupled models of the regolith, the polar caps, and atmospheric transport , 1983 .

[85]  F. Palluconi,et al.  Thermal inertia mapping of Mars from 60°S to 60°N , 1981 .

[86]  D. W. Davies,et al.  Mars: Water vapor observations from the Viking orbiters , 1977 .

[87]  F. Fanale,et al.  Exchange of adsorbed H2O and CO2 between the regolith and atmosphere of Mars caused by changes in surface insolation , 1974 .

[88]  K. Herr,et al.  Evidence About Hydrate and Solid Water in the Martian Surface From the , 1974 .

[89]  J. A. Decker,et al.  High altitude infrared spectroscopic evidence for bound water on Mars. , 1973 .

[90]  P. F. Low,et al.  Frost Phenomena on Mars , 1967, Science.

[91]  B. Schmitt,et al.  Transmission infrared spectra ( 2 – 25 l m ) of carbonaceous chondrites , 2013 .

[92]  Raymond E. Arvidson,et al.  Ground ice at the Phoenix Landing Site: Stability state and origin , 2009 .

[93]  Raymond E. Arvidson,et al.  Results from the Mars Phoenix Lander Robotic Arm experiment , 2009 .

[94]  Michael D. Smith Interannual variability in TES atmospheric observations of Mars during 1999–2003 , 2004 .

[95]  D. Titov Water vapour in the atmosphere of Mars , 2002 .

[96]  H. Maring,et al.  Journal of Geophysical Research , 1949, Nature.