A Second-Order Converse Bound for the Multiple-Access Channel via Wringing Dependence

A new converse bound is presented for the two-user multiple-access channel under the average probability of error constraint. This bound shows that for most channels of interest, the second-order coding rate---that is, the difference between the best achievable rates and the asymptotic capacity region as a function of blocklength $n$ with fixed probability of error---is $O(1/\sqrt{n})$ bits per channel use. The principal tool behind this converse proof is a new measure of dependence between two random variables called wringing dependence, as it is inspired by Ahlswede's wringing technique. The $O(1/\sqrt{n})$ gap is shown to hold for any channel satisfying certain regularity conditions, which includes all discrete-memoryless channels and the Gaussian multiple-access channel. Exact upper bounds as a function of the probability of error are proved for the coefficient in the $O(1/\sqrt{n})$ term, although for most channels they do not match existing achievable bounds.

[1]  Pierre Moulin,et al.  A new metaconverse and outer region for finite-blocklength MACs , 2013, 2013 Information Theory and Applications Workshop (ITA).

[2]  T. Cover Some Advances in Broadcast Channels , 1975 .

[3]  Vincent Y. F. Tan,et al.  A Proof of the Strong Converse Theorem for Gaussian Multiple Access Channels , 2015, IEEE Transactions on Information Theory.

[4]  P. Gács,et al.  Spreading of Sets in Product Spaces and Hypercontraction of the Markov Operator , 1976 .

[5]  Vincent Yan Fu Tan,et al.  Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities , 2014, Found. Trends Commun. Inf. Theory.

[6]  Sergio Verdú,et al.  Second-Order Converses via Reverse Hypercontractivity , 2018, Mathematical Statistics and Learning.

[7]  Rudolf Ahlswede,et al.  Multi-way communication channels , 1973 .

[8]  H. Hirschfeld A Connection between Correlation and Contingency , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  H. Gebelein Das statistische Problem der Korrelation als Variations‐ und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung , 1941 .

[10]  Reza Modarres,et al.  Measures of Dependence , 2011, International Encyclopedia of Statistical Science.

[11]  Michelle Effros,et al.  Random Access Channel Coding in the Finite Blocklength Regime , 2021, IEEE Transactions on Information Theory.

[12]  Vincent Y. F. Tan,et al.  On the dispersions of three network information theory problems , 2012, 2012 46th Annual Conference on Information Sciences and Systems (CISS).

[13]  Claude E. Shannon,et al.  Two-way Communication Channels , 1961 .

[14]  Vincent Y. F. Tan,et al.  Second-order asymptotics for the gaussian MAC with degraded message sets , 2013, 2014 IEEE International Symposium on Information Theory.

[15]  Edward Nelson The free Markoff field , 1973 .

[16]  D. Slepian,et al.  A coding theorem for multiple access channels with correlated sources , 1973 .

[17]  Venkat Anantharam,et al.  Non-interactive simulation of joint distributions: The Hirschfeld-Gebelein-Rényi maximal correlation and the hypercontractivity ribbon , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[18]  Igal Sason,et al.  Concentration of Measure Inequalities in Information Theory, Communications, and Coding , 2012, Found. Trends Commun. Inf. Theory.

[19]  M. Ledoux,et al.  Logarithmic Sobolev Inequalities , 2014 .

[20]  Hiroki Koga,et al.  Information-Spectrum Methods in Information Theory , 2002 .

[21]  Udo Augustin,et al.  GedÄchtnisfreie KanÄle für diskrete Zeit , 1966 .

[22]  Vincent Y. F. Tan,et al.  Second-order asymptotics for the discrete memoryless MAC with degraded message sets , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[23]  Pierre Moulin,et al.  Finite blocklength coding for multiple access channels , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[24]  J. Nicholas Laneman,et al.  Simpler achievable rate regions for multiaccess with finite blocklength , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[25]  Albert Guillén i Fàbregas,et al.  Second-order rate region of constant-composition codes for the multiple-access channel , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[26]  U. Erez,et al.  A note on the dispersion of network problems , 2012, 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel.

[27]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[28]  R. Ahlswede An elementary proof of the strong converse theorem for the multiple-access channel , 1982 .

[29]  Jacob Wolfowitz,et al.  Multiple Access Channels , 1978 .

[30]  J. Nicholas Laneman,et al.  A Second-Order Achievable Rate Region for Gaussian Multi-Access Channels via a Central Limit Theorem for Functions , 2015, IEEE Transactions on Information Theory.

[31]  Elchanan Mossel,et al.  On Reverse Hypercontractivity , 2011, Geometric and Functional Analysis.

[32]  Aaron D. Wyner,et al.  Recent results in the Shannon theory , 1974, IEEE Trans. Inf. Theory.