Thermal conduction in AlxGa1−xN alloys and thin films

We report on experimental and theoretical investigation of thermal conduction in AlxGa1−xN alloys. A focus of this study is on understanding the effect of the Al mass fraction x and temperature on thermal conductivity in AlxGa1−xN thin films. The thermal conductivity of a set of AlxGa1−xN thin films as well as a pure GaN sample was measured using the differential 3ω technique in the temperature range from 80 to 400 K. Application of the virtual-crystal model allowed us to elucidate the strength of the mass-difference and strain-field-difference phonon scattering in AlxGa1−xN alloy system. The obtained thermal-conductivity temperature dependence indicates the high degree of disorder in the system. The measured variation of the thermal conductivity with the Al fraction x is in good agreement with the theory predictions. The measured data and calculation procedure are useful for evaluating the self-heating effect in AlxGa1−xN/GaN heterostructure field-effect transistors and for the device structure optimization.

[1]  Alexander A. Balandin,et al.  Temperature dependence of thermal conductivity of AlxGa1−xN thin films measured by the differential 3ω technique , 2004 .

[2]  Valentin O. Turin,et al.  Performance degradation of GaN field-effect transistors due to thermal boundary resistance at GaN/substrate interface , 2004 .

[3]  T. Paszkiewicz,et al.  Thermal conductivity of GaN crystals in 4.2-300 K range , 2003 .

[4]  Martin Kuball,et al.  Measurement of temperature distribution in multifinger AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy , 2003 .

[5]  A. Balandin,et al.  Modeling of Thermal Conductivity of Polycrystalline GaN Films , 2003 .

[6]  G. A. Slack,et al.  Some effects of oxygen impurities on AlN and GaN , 2002 .

[7]  V. Shklover,et al.  High-temperature phonon thermal conductivity of nanostructures , 2002 .

[8]  B. C. Daly,et al.  Optical pump-and-probe measurement of the thermal conductivity of nitride thin films , 2002 .

[9]  Alexander A. Balandin,et al.  Thermal conductivity of GaN films: Effects of impurities and dislocations , 2002 .

[10]  H. Morkoç,et al.  Electric field induced heating and energy relaxation in GaN , 2003 .

[11]  A. Balandin,et al.  Effect of dislocations on thermal conductivity of GaN layers , 2001 .

[12]  M. Shur,et al.  Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe , 2001 .

[13]  Fred H. Pollak,et al.  High spatial resolution thermal conductivity and Raman spectroscopy investigation of hydride vapor phase epitaxy grown n-GaN/sapphire (0001): Doping dependence , 2000 .

[14]  I. Ferguson,et al.  Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy , 2000 .

[15]  James S. Speck,et al.  Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors , 2000 .

[16]  S. Denbaars,et al.  Thermal conductivity of lateral epitaxial overgrown GaN films , 1999 .

[17]  Brian Thibeault,et al.  GaN-Based FETs for Microwave Power Amplification , 1999 .

[18]  Alexander A. Balandin,et al.  Effect of channel doping on the low-frequency noise in GaN/AlGaN heterostructure field-effect transistors , 1999 .

[19]  Alexander A. Balandin,et al.  Low flicker-noise GaN/AlGaN heterostructure field-effect transistors for microwave communications , 1999 .

[20]  Lester F. Eastman,et al.  Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures , 1999 .

[21]  Michael S. Shur,et al.  AlGaN/GaN high electron mobility field effect transistors with low 1/f noise , 1998 .

[22]  M. Shur,et al.  Self-heating in high-power AlGaN-GaN HFETs , 1998, IEEE Electron Device Letters.

[23]  D. Cahill Thermal conductivity measurement from 30 to 750 K: the 3ω method , 1990 .

[24]  Robert O. Pohl,et al.  The intrinsic thermal conductivity of AIN , 1987 .

[25]  Martin A. Afromowitz,et al.  Thermal conductivity of Ga1−xAlxAs alloys , 1973 .

[26]  R. Pohl,et al.  Thermal Conductivity and Specific Heat of Noncrystalline Solids , 1971 .

[27]  M. G. Holland Analysis of Lattice Thermal Conductivity , 1963 .

[28]  B. Abeles Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures , 1963 .

[29]  E. F. Steigmeier THE DEBYE TEMPERATURES OF III‐V COMPOUNDS , 1963 .

[30]  R. Keyes Elastic Properties of Diamond-Type Semiconductors , 1962 .

[31]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[32]  P. Klemens Thermal Conductivity and Lattice Vibrational Modes , 1958 .

[33]  H. B. Huntington The Elastic Constants of Crystals , 1958 .

[34]  P. Klemens The Scattering of Low-Frequency Lattice Waves by Static Imperfections , 1955 .

[35]  S. S. Ballard,et al.  New Data on the Thermal Conductivity of Optical Crystals , 1951 .

[36]  W. Klemm,et al.  Über Zweistoffsysteme mit Germanium. I. Germanium/Aluminium, Germanium/Zinn und Germanium/Silicium , 1939 .