In-situ STM study of the initial stages of corrosion of Cu(100) electrodes in sulfuric and hydrochloric acid solution

[1]  R. Behm,et al.  IN SITU STM STUDY OF THE ELECTRODEPOSITION AND ANODIC DISSOLUTION OF ULTRATHIN EPITAXIAL NI FILMS ON AU(111) , 1997 .

[2]  B. Ocko,et al.  BROMIDE ADSORPTION ON AG(001): A POTENTIAL INDUCED TWO-DIMENSIONAL ISING ORDER-DISORDER TRANSITION , 1997 .

[3]  R. Behm,et al.  Electrodeposition of Ni on Cu(100): an in-situ STM study , 1997 .

[4]  Magnussen,et al.  Overpotential-Controlled Nucleation of Ni Island Arrays on Reconstructed Au(111) Electrode Surfaces. , 1996, Physical review letters.

[5]  F. Lapicque,et al.  Importance of Surface Preparation in Electrochemical Investigations of the Copper System in Dilute Copper Sulfate Solutions , 1996 .

[6]  E. Budevski,et al.  Electrochemical Phase Formation and Growth , 1996 .

[7]  B. Ocko,et al.  Structural and Kinetic Aspects of Bromide Adsorption on Au(100) , 1996 .

[8]  Sam F. Y. Li,et al.  In Situ Atomic Force Microscopy of the Electrochemical Dissolution of a Copper Grain , 1996 .

[9]  G. Brown,et al.  A SERS study of ion adsorption at a copper electrode in-situ , 1996 .

[10]  B. Ocko,et al.  The structure and phase behavior of electrodeposited halides on single-crystal metal surfaces , 1996 .

[11]  B. Ocko,et al.  In-Situ X-ray Diffraction and STM Studies of Bromide Adsorption on Au(111) Electrodes , 1996 .

[12]  H. Ibach,et al.  Time fluctuations of steps on Cu(11n) surfaces investigated by temperature variable tunneling microscopy , 1995 .

[13]  A. Bard,et al.  Scanning Tunneling Microscopic Study with Atomic Resolution of the Dissolution of Cu(100) Electrodes in Aqueous Chloride Media , 1995 .

[14]  Behm,et al.  Step faceting: Origin of the temperature dependent induction period in Ni(100) oxidation. , 1995, Physical review letters.

[15]  G. Brown,et al.  In-situ spectroscopic evidence for the adsorption of SO2−4 ions at a copper electrode in sulfuric acid solution , 1995 .

[16]  T. Kubo,et al.  In situ AFM observations of oxide film formation o n Cu(111) and Cu (100) surfaces under aqueous alkaline solutions , 1995 .

[17]  K. Doblhofer,et al.  The electrochemical interface between copper(111) and aqueous electrolytes , 1995 .

[18]  A. Bard,et al.  Scanning Tunneling Microscopic Study with Atomic Resolution of the Dissolution of Cu(111) in Aqueous Chloride Solutions , 1994 .

[19]  Chun-Li Liu Energetics of diffusion processes during nucleation and growth for the Cu/Cu(100) system , 1994 .

[20]  H. Ibach,et al.  On the time structure of tunneling images of steps , 1994 .

[21]  O. R. Mattos,et al.  Mass‐Transport Study for the Electrodissolution of Copper in 1M Hydrochloric Acid Solution by Impedance , 1993 .

[22]  D. Macfarlane,et al.  A kinetic model for the dissolution mechanism of copper in acidic sulfate solutions , 1993 .

[23]  R. Behm,et al.  Homoepitaxial growth on Ni(100) and its modification by a preadsorbed oxygen adlayer , 1993 .

[24]  R. Alkire,et al.  In situ observations of shape evolution during copper dissolution using atomic force microscopy , 1992 .

[25]  J. Frohn,et al.  Step dynamics on Ag(111) and Cu(100) surfaces , 1992 .

[26]  J. F. Wolf,et al.  Step roughness on vicinal Ag(111) , 1991 .

[27]  G. Ertl,et al.  Atomic motion and mass transport in the oxygen induced reconstructions of Cu(110) , 1991 .

[28]  J. Stickney,et al.  SURFACE CHEMISTRY OF CU(100) IN ACIDIC SULFATE SOLUTIONS , 1990 .

[29]  I. Villegas,et al.  Ordering of Copper Single‐Crystal Surfaces in Solution Confirmation by Low Energy Electron Diffraction , 1990 .

[30]  U. Stimming,et al.  The use of time-resolved scanning tunneling microscopy for the determination of microscopic reaction rates , 1990 .

[31]  E. Schmidt,et al.  A rotating ring—disk study of dissolved Cu(I) at the Cu/Cu(II) electrode in sulphate media , 1989 .

[32]  J. Stickney,et al.  Adsorption of gaseous and aqueous hydrochloric acid on the low-index planes of copper , 1988 .

[33]  R. Behm,et al.  An in-situ scanning tunneling microscopy study of au (111) with atomic scale resolution , 1988 .

[34]  K. Nobe,et al.  Kinetics and Mechanisms of Cu Electrodissolution in Chloride Media , 1986 .

[35]  A. Pearlstein,et al.  Film Formation and Current Oscillations in the Electrodissolution of Cu in Acidic Chloride Media I . Experimental Studies , 1985 .

[36]  G. Horányi,et al.  Radiotracer study of the adsorption of HSO4− ions on a “copperized” electrode and on underpotential deposited cadmium on copper in acidic medium , 1983 .

[37]  D. Westphal,et al.  Chlorine adsorption on copper. II: Photoemission from Cu(001)c(2×2)−Cl and Cu(111)(√3×√3)R30°−Cl , 1983 .

[38]  Allen J. Bard,et al.  Encyclopedia of Electrochemistry of the Elements , 1978 .

[39]  T. O’keefe,et al.  The effect of antimony, chloride ion, and glue on copper electrorefining , 1978 .

[40]  A. Gewirth,et al.  Nanoscale Probes of the Solid — Liquid Interface , 1995 .

[41]  R. Behm,et al.  In situ scanning tunnelling microscopy observations of a disorder–order phase transition in hydrogensulfate adlayers on Au(111) , 1992 .

[42]  U. Stimming,et al.  Scanning tunneling microscopy of copper corrosion in aqueous perchloric acid , 1990 .

[43]  B. Conway Kinetics and mechanisms of electrode processes , 1983 .

[44]  J. Bockris,et al.  Galvanostatic studies of the kinetics of deposition and dissolution in the copper + copper sulphate system , 1959 .