THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS

We present the stellar kinematics in the central 2'' of the luminous elliptical galaxy M87 (NGC 4486), using laser adaptive optics to feed the Gemini telescope integral-field spectrograph, Near-infrared Integral Field Spectrograph (NIFS). The velocity dispersion rises to 480 km s–1 at 02. We combine these data with extensive stellar kinematics out to large radii to derive a black hole mass equal to (6.6 ± 0.4) × 109 M ☉, using orbit-based axisymmetric models and including only the NIFS data in the central region. Including previously reported ground-based data in the central region drops the uncertainty to 0.25 × 109 M ☉ with no change in the best-fit mass; however, we rely on the values derived from the NIFS-only data in the central region in order to limit systematic differences. The best-fit model shows a significant increase in the tangential velocity anisotropy of stars orbiting in the central region with decreasing radius, similar to that seen at the centers of other core galaxies. The black hole mass is insensitive to the inclusion of a dark halo in the models—the high angular resolution provided by the adaptive optics breaks the degeneracy between black hole mass and stellar mass-to-light ratio. The present black hole mass is in excellent agreement with the Gebhardt & Thomas value, implying that the dark halo must be included when the kinematic influence of the black hole is poorly resolved. This degeneracy implies that the black hole masses of luminous core galaxies, where this effect is important, may need to be re-evaluated. The present value exceeds the prediction of the black hole-dispersion and black hole-luminosity relations, both of which predict about 1 × 109 M ☉ for M87, by close to twice the intrinsic scatter in the relations. The high end of the black hole correlations may be poorly determined at present.

[1]  E. Perlman,et al.  A DISPLACED SUPERMASSIVE BLACK HOLE IN M87 , 2010, 1005.2173.

[2]  A Theoretical Interpretation of the Black Hole Fundamental Plane , 2007, astro-ph/0701351.

[3]  Roeland P. van der Marel,et al.  accepted for publication in The Astrophysical Journal Supplements Axisymmetric Three-Integral Models for Galaxies , 1999 .

[4]  S. Faber,et al.  Velocity dispersions and mass-to-light ratios for elliptical galaxies. , 1976 .

[5]  Karl Gebhardt,et al.  THE BLACK HOLE MASS, STELLAR MASS-TO-LIGHT RATIO, AND DARK HALO IN M87 , 2009, 0906.1492.

[6]  Ralf Bender,et al.  STRUCTURE AND FORMATION OF ELLIPTICAL AND SPHEROIDAL GALAXIES , 2008, 0810.1681.

[7]  V. Marel,et al.  Velocity profiles of galaxies with claimed black holes – III. Observations and models for M87 , 1994 .

[8]  A. Marconi,et al.  The Supermassive Black Hole of M87 and the Kinematics of Its Associated Gaseous Disk , 1997 .

[9]  S. Leiden,et al.  Estimating black hole masses in triaxial galaxies , 2009, 0910.0844.

[10]  H. Ford,et al.  HST FOS spectroscopy of M87: Evidence for a disk of ionized gas around a massive black hole , 1994 .

[11]  E. Emsellem,et al.  Difficulties with Recovering the Masses of Supermassive Black Holes from Stellar Kinematical Data , 2002, astro-ph/0210379.

[12]  S. Tremaine,et al.  Axisymmetric, Three-Integral Models of Galaxies: A Massive Black Hole in NGC 3379 , 1999, astro-ph/9912026.

[13]  K. Gebhardt,et al.  Gemini Near Infrared Spectrograph Observations of the Central Supermassive Black Hole in Centaurus A , 2005, astro-ph/0501446.

[14]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[15]  T. Lauer,et al.  Planetary Camera observations of the M87 stellar cusp , 1992 .

[16]  R. Davies,et al.  The SAURON project - IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies , 2005, astro-ph/0505042.

[17]  Laura Ferrarese David Merritt A Fundamental Relation Between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[18]  Hans-Walter Rix,et al.  Dynamical Modeling of Velocity Profiles: The Dark Halo around the Elliptical Galaxy NGC 2434 , 1997 .

[19]  William B. Sparks,et al.  Month-Timescale Optical Variability in the M87 Jet , 2003, astro-ph/0311161.

[20]  The nuclear orbital distribution in galaxies as a fossil record of black hole formation from integral-field spectroscopy , 2004, astro-ph/0412433.

[21]  R. Davies,et al.  A method to remove residual OH emission from near-infrared spectra , 2007 .

[22]  Claudia Winge,et al.  THE GEMINI SPECTRAL LIBRARY OF NEAR-IR LATE-TYPE STELLAR TEMPLATES AND ITS APPLICATION FOR VELOCITY DISPERSION MEASUREMENTS , 2009, 0910.2619.

[23]  The SAURON project—V. Integral-field emission-line kinematics of 48 elliptical and lenticular galaxies , 2004, astro-ph/0404034.

[24]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[25]  K. Gebhardt,et al.  Canada-France-Hawaii Telescope Adaptive Optics Observations of the Central Kinematics in M15 , 1999, astro-ph/9912172.

[26]  M. Schwarzschild,et al.  A numerical model for a triaxial stellar system in dynamical equilibrium , 1979 .

[27]  S. Tremaine,et al.  Kinematics of 10 Early-Type Galaxies from Hubble Space Telescope and Ground-based Spectroscopy , 2003, astro-ph/0306464.

[28]  R. Abuter,et al.  The Star-forming Torus and Stellar Dynamical Black Hole Mass in the Seyfert 1 Nucleus of NGC 3227* , 2006 .

[29]  R. Bender,et al.  Mapping stationary axisymmetric phase-space distribution functions by orbit libraries , 2004, astro-ph/0406014.

[30]  D. E. Harris,et al.  Superluminal Radio Features in the M87 Jet and the Site of Flaring TeV Gamma-Ray Emission , 2007, 0705.2448.

[31]  M. Rieke,et al.  Hubble Space Telescope NICMOS Imaging of the Core of M87 , 2002, astro-ph/0204103.

[32]  Andreas Kelz,et al.  Design, construction, and performance of VIRUS-P: the prototype of a highly replicated integral-field spectrograph for HET , 2008, Astronomical Telescopes + Instrumentation.

[33]  P. T. de Zeeuw,et al.  The Central Parsecs of Centaurus A: High-excitation Gas, a Molecular Disk, and the Mass of the Black Hole , 2007, 0709.1877.

[34]  J. E. Beckman,et al.  The nearest active galaxies , 1993 .

[35]  Juan P. Madrid,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF AN EXTRAORDINARY FLARE IN THE M87 JET , 2007, 0904.3546.

[36]  Gustavo Arriagada,et al.  Laser guide star upgrade of Altair at Gemini North , 2006, SPIE Astronomical Telescopes + Instrumentation.

[37]  High-resolution imaging of the M87 core , 1987, Nature.

[38]  P. Martini,et al.  Coevolution of Black Holes and Galaxies , 2004 .

[39]  Ralf Bender,et al.  The Demography of massive dark objects in galaxy centers , 1997, astro-ph/9708072.

[40]  L. Hernquist,et al.  Models of Galaxies with Central Black Holes: Adiabatic Growth in Spherical Galaxies , 1994, astro-ph/9407005.

[41]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[42]  Sebastian Rabien,et al.  Using adaptive optics to probe the dynamics and star formation in active galactic nuclei , 2004, SPIE Astronomical Telescopes + Instrumentation.

[43]  T. Lauer,et al.  THE BLACK HOLE MASS IN THE BRIGHTEST CLUSTER GALAXY NGC 6086 , 2010, 1009.0750.

[44]  Axisymmetric Dynamical Models of the Central Regions of Galaxies , 2002, astro-ph/0209483.

[45]  Roger L. Davies,et al.  Determination of masses of the central black holes in NGC 524 and 2549 using laser guide star adaptive optics , 2009, 0907.3748.

[46]  Tod R. Lauer,et al.  The Masses of Nuclear Black Holes in Luminous Elliptical Galaxies and Implications for the Space Density of the Most Massive Black Holes , 2006, astro-ph/0606739.

[47]  S. Tremaine,et al.  Comparison of approximately isothermal gravitational potentials of elliptical galaxies based on X-ray and optical data , 2010 .

[48]  K. Shortridge,et al.  Dynamical evidence for a central mass concentration in the galaxy M87. , 1978 .

[49]  S. Tremaine,et al.  A general method for constructing spherical galaxy models , 1984 .

[50]  S. Tremaine,et al.  The Black Hole Mass and Extreme Orbital Structure in NGC 1399 , 2007, 0709.0585.

[51]  S. Tremaine,et al.  A STELLAR DYNAMICAL MEASUREMENT OF THE BLACK HOLE MASS IN THE MASER GALAXY NGC 4258 , 2008, 0808.4001.

[52]  Lars Hernquist,et al.  The dynamical evolution of massive black hole binaries — II. Self-consistent N-body integrations , 1997 .

[53]  R. Bender,et al.  Regularized orbit models unveiling the stellar structure and dark matter halo of the Coma elliptical NGC 4807 , 2005, astro-ph/0504466.

[54]  M. Milosavljevic,et al.  Formation of Galactic Nuclei , 2001, astro-ph/0103350.

[55]  William H. Press,et al.  Numerical recipes in FORTRAN (2nd ed.): the art of scientific computing , 1992 .

[56]  The black hole in NGC 3379: a comparison of gas and stellar dynamical mass measurements with HST and integral‐field data★ , 2006, astro-ph/0605479.

[57]  J. A. Biretta,et al.  Flaring X-Ray Emission from HST-1, a Knot in the M87 Jet , 2003 .

[58]  T. Beers,et al.  Measures of location and scale for velocities in clusters of galaxies. A robust approach , 1990 .

[59]  Juntai Shen,et al.  THE SUPERMASSIVE BLACK HOLE AND DARK MATTER HALO OF NGC 4649 (M60) , 2009, 0910.4168.

[60]  R. J. Hanisch,et al.  Astronomical Data Analysis Software and Systems X , 2014 .