Revenue submodularity

We introduce revenue submodularity, the property that market expansion has diminishing returns on an auction's expected revenue. We prove that revenue submodularity is generally possible only in matroid markets, that Bayesian-optimal auctions are always revenue-submodular in such markets, and that the VCG mechanism is revenue-submodular in matroid markets with i.i.d bidders and "sufficient competition". We also give two applications of revenue submodularity: good approximation algorithms for novel market expansion problems, and approximate revenue guarantees for the VCG mechanism with i.i.d bidders.

[1]  Michael Ostrovsky,et al.  Reserve Prices in Internet Advertising Auctions: A Field Experiment , 2009, Journal of Political Economy.

[2]  Benjamin Edelman,et al.  Optimal Auction Design and Equilibrium Selection in Sponsored Search Auctions , 2010 .

[3]  Tim Roughgarden,et al.  Simple versus optimal mechanisms , 2009, SECO.

[4]  Jon Feldman,et al.  An online mechanism for ad slot reservations with cancellations , 2009, SODA.

[5]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.

[6]  Sven de Vries,et al.  Ascending auctions for integral (poly)matroids with concave nondecreasing separable values , 2008, SODA '08.

[7]  Anna R. Karlin,et al.  Auctions for structured procurement , 2008, SODA '08.

[8]  Jason Hartline Lectures on Frugal Mechanism Design , 2008 .

[9]  Vahab S. Mirrokni,et al.  Maximizing Non-Monotone Submodular Functions , 2011, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[10]  Yoav Shoham,et al.  Asymptotically optimal repeated auctions for sponsored search , 2007, ICEC.

[11]  Kevin Leyton-Brown,et al.  Revenue monotonicity in combinatorial auctions , 2007, SECO.

[12]  Jan Vondrák,et al.  Maximizing a Submodular Set Function Subject to a Matroid Constraint (Extended Abstract) , 2007, IPCO.

[13]  Nicole Immorlica,et al.  Matroids, secretary problems, and online mechanisms , 2007, SODA '07.

[14]  Benjamin Edelman,et al.  Optimal Auction Design in a Multi-unit Environment : The Case of Sponsored Search Auctions , 2007 .

[15]  Andreas S. Schulz,et al.  Revisiting the Greedy Approach to Submodular Set Function Maximization , 2007 .

[16]  Ashish Goel,et al.  Truthful auctions for pricing search keywords , 2006, EC '06.

[17]  René Kirkegaard A short proof of the Bulow-Klemperer auctions vs. negotiations result , 2006 .

[18]  Anna R. Karlin,et al.  Beyond VCG: frugality of truthful mechanisms , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[19]  Paul Milgrom,et al.  Putting Auction Theory to Work , 2004 .

[20]  Zvika Neeman The effectiveness of English auctions , 2003, Games Econ. Behav..

[21]  Kunal Talwar,et al.  The Price of Truth: Frugality in Truthful Mechanisms , 2003, STACS.

[22]  Lawrence M. Ausubel,et al.  Ascending Auctions with Package Bidding , 2002 .

[23]  Alexander Vardy,et al.  The intractability of computing the minimum distance of a code , 1997, IEEE Trans. Inf. Theory.

[24]  Jeremy I. Bulow,et al.  Auctions versus Negotiations , 1996 .

[25]  Dexter Kozen,et al.  The Design and Analysis of Algorithms , 1991, Texts and Monographs in Computer Science.

[26]  James G. Oxley,et al.  Matroid theory , 1992 .

[27]  Jeffrey D. Smith,et al.  Design and Analysis of Algorithms , 2009, Lecture Notes in Computer Science.

[28]  Roger B. Myerson,et al.  Optimal Auction Design , 1981, Math. Oper. Res..

[29]  Ronald V. Book,et al.  Review: Michael R. Garey and David S. Johnson, Computers and intractability: A guide to the theory of $NP$-completeness , 1980 .

[30]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[31]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .