CHARMM additive and polarizable force fields for biophysics and computer-aided drug design.

BACKGROUND Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. SCOPE OF REVIEW As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular biomolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields' parametrization philosophy and methodology. MAJOR CONCLUSIONS Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1μs on proteins, DNA, lipids and carbohydrates. GENERAL SIGNIFICANCE Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. This article is part of a Special Issue entitled "Recent developments of molecular dynamics".

[1]  Alexander D. MacKerell,et al.  Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations , 2004, J. Comput. Chem..

[2]  Alexander D. MacKerell,et al.  Polarizability rescaling and atom-based Thole scaling in the CHARMM Drude polarizable force field for ethers , 2010, Journal of molecular modeling.

[3]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[4]  J. Ponder,et al.  Force fields for protein simulations. , 2003, Advances in protein chemistry.

[5]  Alexander D. MacKerell,et al.  Impact of Ribosomal Modification on the Binding of the Antibiotic Telithromycin Using a Combined Grand Canonical Monte Carlo/Molecular Dynamics Simulation Approach , 2013, PLoS Comput. Biol..

[6]  Alexander D. MacKerell,et al.  Polarizable empirical force field for nitrogen‐containing heteroaromatic compounds based on the classical Drude oscillator , 2009, J. Comput. Chem..

[7]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[8]  Alexander D. MacKerell,et al.  Conformational properties of methyl β-maltoside and methyl α- and β-cellobioside disaccharides. , 2011, The journal of physical chemistry. B.

[9]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges , 2012, J. Chem. Inf. Model..

[10]  E. Stellwagen,et al.  Distribution of Helicity within the Model Peptide Acetyl(AAQAA)3amide , 1994 .

[11]  Alexander D. MacKerell,et al.  CHARMM Additive All-Atom Force Field for Acyclic Polyalcohols, Acyclic Carbohydrates and Inositol. , 2009, Journal of chemical theory and computation.

[12]  Alexander D. MacKerell,et al.  Many-body polarization effects and the membrane dipole potential. , 2009, Journal of the American Chemical Society.

[13]  M. Karplus,et al.  Simulation of activation free energies in molecular systems , 1996 .

[14]  Alexander D. MacKerell,et al.  Combined ab initio/empirical approach for optimization of Lennard–Jones parameters , 1998 .

[15]  Alexander D. MacKerell,et al.  CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses. , 2010, The journal of physical chemistry. B.

[16]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons , 1989 .

[17]  Pedro E. M. Lopes,et al.  Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications , 2009, Theoretical chemistry accounts.

[18]  Alexander D. MacKerell,et al.  Polarizable empirical force field for acyclic polyalcohols based on the classical Drude oscillator. , 2013, Biopolymers.

[19]  Alexander D. MacKerell,et al.  Recent Advances in Polarizable Force Fields for Macromolecules: Microsecond Simulations of Proteins Using the Classical Drude Oscillator Model , 2014, The journal of physical chemistry letters.

[20]  Alexander D. MacKerell,et al.  CHARMM Additive All-Atom Force Field for Glycosidic Linkages between Hexopyranoses. , 2009, Journal of chemical theory and computation.

[21]  Alexander D. MacKerell,et al.  All‐atom polarizable force field for DNA based on the classical drude oscillator model , 2014, J. Comput. Chem..

[22]  Nicolas Foloppe,et al.  Importance of accurate DNA structures in solution: the Jun-Fos model. , 2008, Journal of molecular biology.

[23]  Nancy Wilkins-Diehr,et al.  TeraGrid: Analysis of Organization, System Architecture, and Middleware Enabling New Types of Applications , 2006, High Performance Computing Workshop.

[24]  Alexander D. MacKerell,et al.  Additive and Classical Drude Polarizable Force Fields for Linear and Cyclic Ethers. , 2007, Journal of chemical theory and computation.

[25]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[26]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[27]  Alexander D. MacKerell,et al.  Altered structural fluctuations in duplex RNA versus DNA: a conformational switch involving base pair opening. , 2003, Nucleic acids research.

[28]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution , 2000 .

[29]  Alexander D. MacKerell,et al.  Polarizable empirical force field for alkanes based on the classical Drude oscillator model. , 2005, The journal of physical chemistry. B.

[30]  Alexander D. MacKerell,et al.  Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field , 2014, The journal of physical chemistry. B.

[31]  Peter L. Freddolino,et al.  Molecular dynamics simulations of the complete satellite tobacco mosaic virus. , 2006, Structure.

[32]  Alexander D. MacKerell,et al.  Inclusion of many-body effects in the additive CHARMM protein CMAP potential results in enhanced cooperativity of α-helix and β-hairpin formation. , 2012, Biophysical journal.

[33]  Kenneth J. Miller,et al.  Additivity methods in molecular polarizability , 1990 .

[34]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[35]  Peter L. Freddolino,et al.  Common structural transitions in explicit-solvent simulations of villin headpiece folding. , 2009, Biophysical journal.

[36]  Alexander D. MacKerell,et al.  Impact of 2′‐hydroxyl sampling on the conformational properties of RNA: Update of the CHARMM all‐atom additive force field for RNA , 2011, J. Comput. Chem..

[37]  Alexander D. MacKerell,et al.  Understanding the dielectric properties of liquid amides from a polarizable force field. , 2008, The journal of physical chemistry. B.

[38]  Michiel Sprik,et al.  COMPUTER-SIMULATION OF THE DYNAMICS OF INDUCED POLARIZATION FLUCTUATIONS IN WATER , 1991 .

[39]  Alexander D. MacKerell,et al.  Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. , 2012, Journal of chemical theory and computation.

[40]  Alexander D. MacKerell,et al.  Induction of peptide bond dipoles drives cooperative helix formation in the (AAQAA)3 peptide. , 2014, Biophysical journal.

[41]  Alexander D. MacKerell,et al.  Extension of the CHARMM general force field to sulfonyl‐containing compounds and its utility in biomolecular simulations , 2012, J. Comput. Chem..

[42]  Alexander D. MacKerell,et al.  Automated conformational energy fitting for force-field development , 2008, Journal of molecular modeling.

[43]  Alexander D. MacKerell,et al.  Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. , 2002, Journal of the American Chemical Society.

[44]  F. Javier Luque,et al.  Polarization effects in molecular interactions , 2011 .

[45]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[46]  Alexander D. MacKerell,et al.  Importance of attractive van der Waals contribution in empirical energy function models for the heat of vaporization of polar liquids , 1991 .

[47]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid hydrocarbons , 1984 .

[48]  Klaus Schulten,et al.  High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD. , 2011, The journal of physical chemistry letters.

[49]  P. T. V. Duijnen,et al.  Molecular and Atomic Polarizabilities: Thole's Model Revisited , 1998 .

[50]  Xiao Zhu,et al.  Polarizable empirical force field for sulfur‐containing compounds based on the classical Drude oscillator model , 2010, J. Comput. Chem..

[51]  Alexander D. MacKerell,et al.  Polarizable empirical force field for aromatic compounds based on the classical drude oscillator. , 2007, The journal of physical chemistry. B.

[52]  L. Nilsson,et al.  Investigation of transcription factor Ndt80 affinity differences for wild type and mutant DNA: A molecular dynamics study , 2008, Proteins.

[53]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[54]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[55]  Benoît Roux,et al.  Hydration of Amino Acid Side Chains: Nonpolar and Electrostatic Contributions Calculated from Staged Molecular Dynamics Free Energy Simulations with Explicit Water Molecules , 2004 .

[56]  Benoît Roux,et al.  AUTOMATED FORCE FIELD PARAMETERIZATION FOR NON-POLARIZABLE AND POLARIZABLE ATOMIC MODELS BASED ON AB INITIO TARGET DATA. , 2013, Journal of chemical theory and computation.

[57]  Alexander D. MacKerell,et al.  CHARMM additive all-atom force field for aldopentofuranoses, methyl-aldopentofuranosides, and fructofuranose. , 2009, The journal of physical chemistry. B.

[58]  Alexander D. MacKerell,et al.  Improved treatment of the protein backbone in empirical force fields. , 2004, Journal of the American Chemical Society.

[59]  R. Dror,et al.  How Fast-Folding Proteins Fold , 2011, Science.

[60]  Benoît Roux,et al.  A polarizable force field of dipalmitoylphosphatidylcholine based on the classical Drude model for molecular dynamics simulations of lipids. , 2013, The journal of physical chemistry. B.

[61]  Alexander D. MacKerell,et al.  Formalisms for the Explicit Inclusion of Electronic Polarizability in Molecular Modeling and Dynamics Studies , 2009 .

[62]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[63]  Xiao Zhu,et al.  Recent developments and applications of the CHARMM force fields , 2012, Wiley interdisciplinary reviews. Computational molecular science.

[64]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[65]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[66]  Alexander D. MacKerell,et al.  Intrinsic contribution of the 2'-hydroxyl to RNA conformational heterogeneity. , 2012, Journal of the American Chemical Society.

[67]  Nicolas Foloppe,et al.  Quantification of DNA BI/BII backbone states in solution. Implications for DNA overall structure and recognition. , 2006, Journal of the American Chemical Society.

[68]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[69]  Benoît Roux,et al.  Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm , 2003 .

[70]  Peter L. Freddolino,et al.  Force field bias in protein folding simulations. , 2009, Biophysical journal.

[71]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 2. Vibrational frequencies and thermodynamics , 1989 .

[72]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data , 2000 .

[73]  Jenn-Huei Lii,et al.  Alcohols, ethers, carbohydrates, and related compounds. I. The MM4 force field for simple compounds , 2003, J. Comput. Chem..

[74]  Alexander D. MacKerell,et al.  Combined ab initio/empirical approach for optimization of Lennard‐Jones parameters for polar‐neutral compounds , 2002, J. Comput. Chem..

[75]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing , 2012, J. Chem. Inf. Model..

[76]  Alexander D. MacKerell,et al.  Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium. , 2012, Journal of chemical theory and computation.

[77]  Ming-Jing Hwang,et al.  Derivation of Class II Force Fields. 2. Derivation and Characterization of a Class II Force Field, CFF93, for the Alkyl Functional Group and Alkane Molecules , 1994 .

[78]  Alexander D. MacKerell,et al.  CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. , 2011, Journal of chemical theory and computation.

[79]  Alexander D. MacKerell,et al.  Glycan reader: Automated sugar identification and simulation preparation for carbohydrates and glycoproteins , 2011, J. Comput. Chem..

[80]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[81]  Alexander D. MacKerell,et al.  Development of CHARMM polarizable force field for nucleic acid bases based on the classical Drude oscillator model. , 2011, The journal of physical chemistry. B.

[82]  H. Schwalbe,et al.  Structure and dynamics of the homologous series of alanine peptides: a joint molecular dynamics/NMR study. , 2007, Journal of the American Chemical Society.

[83]  Alexander D. MacKerell,et al.  Conformational Properties of α- or β-(1→6)-Linked Oligosaccharides: Hamiltonian Replica Exchange MD Simulations and NMR Experiments , 2014, The journal of physical chemistry. B.

[84]  Alexander D. MacKerell,et al.  Polarizable Empirical Force Field for Hexopyranose Monosaccharides Based on the Classical Drude Oscillator , 2014, The journal of physical chemistry. B.

[85]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[86]  Alexander D. MacKerell,et al.  An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. , 2005, The journal of physical chemistry. B.

[87]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[88]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[89]  Alexander D. MacKerell,et al.  A simple polarizable model of water based on classical Drude oscillators , 2003 .

[90]  Piotr Cieplak,et al.  Polarization effects in molecular mechanical force fields , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[91]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[92]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[93]  Alexander D. MacKerell,et al.  Explicit Inclusion of Induced Polarization in Atomistic Force Fields Based on the Classical Drude Oscillator Model , 2016 .

[94]  M. Jensen,et al.  Reparameterization of all-atom dipalmitoylphosphatidylcholine lipid parameters enables simulation of fluid bilayers at zero tension. , 2007, Biophysical journal.

[95]  S. Lifson,et al.  On the Theory of Helix—Coil Transition in Polypeptides , 1961 .

[96]  Steven J. Stuart,et al.  Potentials and Algorithms for Incorporating Polarizability in Computer Simulations , 2003 .

[97]  Xiao Zhu,et al.  Intrinsic Energy Landscapes of Amino Acid Side-Chains , 2012, J. Chem. Inf. Model..

[98]  Alexander D. MacKerell,et al.  An Improved Empirical Potential Energy Function for Molecular Simulations of Phospholipids , 2000 .

[99]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[100]  Alexander D. MacKerell,et al.  An Empirical Potential Energy Function for Phospholipids: Criteria for Parameter Optimization and Applications , 1996 .

[101]  Alexander D. MacKerell,et al.  CHARMM all-atom additive force field for sphingomyelin: elucidation of hydrogen bonding and of positive curvature. , 2014, Biophysical journal.

[102]  Alexander D. MacKerell,et al.  An all-atom empirical energy function for the simulation of nucleic acids , 1995 .

[103]  Jie Li,et al.  Development of polarizable models for molecular mechanical calculations I: parameterization of atomic polarizability. , 2011, The journal of physical chemistry. B.

[104]  Alexander D. MacKerell,et al.  Conformational Determinants of the Activity of Antiproliferative Factor Glycopeptide , 2013, J. Chem. Inf. Model..

[105]  J. Andrew McCammon,et al.  The dynamic picture of protein structure , 1983 .

[106]  Alexander D. MacKerell,et al.  Induced Polarization Influences the Fundamental Forces in DNA Base Flipping , 2014, The journal of physical chemistry letters.