An analytical hybrid GORT model for bidirectional reflectance over discontinuous plant canopies

The geometric optical (GO) bidirectional reflectance model, combined with a new component spectral signature submodel, can be used to estimate the bidirectional reflectance distribution function (BRDF) of discontinuous canopies. This approach retains the GO approach of incorporating the effect of shadows cast by crowns on the background. The newly developed submodel uses an analytical approximation of the radiative transfer (RT) within the plant canopies to model the spectral properties of each scene component. A multiple scale-hotspot function that incorporates effects for smaller canopy objects like branches, stems and leaves was also well modeled. Comparison of model results with field measurements (ASAS, POLDER and PARABOLA) over an old black spruce forest in central Canada demonstrated that the model ran predict the basic features of the BRDF, i.e., bowl shape and the hotspot. The benefits of the model presented are simplicity, improved treatment of multiple scattering and a new method of estimating the component signatures.

[1]  B. Hapke,et al.  The cause of the hot spot in vegetation canopies and soils: Shadow-hiding versus coherent backscatter , 1996 .

[2]  Alan H. Strahler,et al.  A knowledge-based inversion of physical BRDF model and three examples , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[3]  N. Goel Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data , 1988 .

[4]  Jean-Louis Roujean,et al.  A tractable physical model of shortwave radiation interception by vegetative canopies , 1996 .

[5]  A. Strahler,et al.  Geometric-Optical Modeling of a Conifer Forest Canopy , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[6]  V. Judson Harward,et al.  Mapping forest vegetation using landsat TM imagery and a canopy reflectance model , 1994 .

[7]  G. Campbell,et al.  Simple equation to approximate the bidirectional reflectance from vegetative canopies and bare soil surfaces. , 1985, Applied optics.

[8]  Alan H. Strahler,et al.  Remote Estimation of Crown Size, Stand Density, and Biomass on the Oregon Transect , 1994 .

[9]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[10]  M. Monsi Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur die Stoffproduktion , 1953 .

[11]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[12]  J. Monteith,et al.  The Radiation Regime and Architecture of Plant Stands. , 1983 .

[13]  A. Strahler,et al.  On the derivation of kernels for kernel‐driven models of bidirectional reflectance , 1995 .

[14]  Annick Bricaud,et al.  The POLDER mission: instrument characteristics and scientific objectives , 1994, IEEE Trans. Geosci. Remote. Sens..

[15]  B. Pinty,et al.  A physical model of the bidirectional reflectance of vegetation canopies , 1990 .

[16]  K. Jon Ranson,et al.  The Boreal Ecosystem-Atmosphere Study (BOREAS) : an overview and early results from the 1994 field year , 1995 .

[17]  Alan H. Strahler,et al.  Modeling bidirectional reflectance of forests and woodlands using boolean models and geometric optics , 1990 .

[18]  D S Kimes,et al.  Radiative transfer model for heterogeneous 3-D scenes. , 1982, Applied optics.

[19]  Charles L. Walthall,et al.  Evidence of hot spot directional signature from airborne POLDER measurements , 1997, IEEE Trans. Geosci. Remote. Sens..

[20]  Jean-Louis Roujean,et al.  Transmission of solar radiation in boreal conifer forests : Measurements and models , 1997 .

[21]  A. Strahler,et al.  Geometric-Optical Bidirectional Reflectance Modeling of a Conifer Forest Canopy , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Alan H. Strahler,et al.  A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[23]  D. Deering,et al.  A sphere-scanning radiometer for rapid directional measurements of sky and ground radiance: The PARABOLA field instrument , 1984 .

[24]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[25]  T. Nilson,et al.  Approximate Analytical Methods for Calculating the Reflection Functions of Leaf Canopies in Remote Sensing Applications , 1991 .

[26]  Xiaowen Li,et al.  Inversion of the Li-Strahler canopy reflectance model for mapping forest structure , 1997, IEEE Trans. Geosci. Remote. Sens..

[27]  A. Strahler,et al.  A hotspot model for leaf canopies , 1991 .

[28]  Richard A. Fournier,et al.  Seasonal change in understory reflectance of boreal forests and influence on canopy vegetation indices , 1997 .

[29]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[30]  Qin Wenhan,et al.  Modeling bidirectional reflectance of multicomponent vegetation canopies , 1993 .

[31]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[32]  E. Walter-Shea,et al.  Optical properties of canopy elements in the boreal forest , 1995, 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications.

[33]  A. Kuusk The Hot Spot Effect in Plant Canopy Reflectance , 1991 .

[34]  R. Dickinson,et al.  A physical model of the bidirectional reflectance of vegetation canopies: 2. Inversion and validation , 1990 .

[35]  Crystal B. Schaaf,et al.  Validation of bidirectional and hemispherical reflectances from a geometric-optical model using ASAS imagery and pyranometer measurements of a spruce forest , 1994 .

[36]  Siegfried A. W. Gerstl,et al.  Principles of the radiosity method versus radiative transfer for canopy reflectance modeling , 1992, IEEE Trans. Geosci. Remote. Sens..

[37]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[38]  R. Myneni,et al.  A review on the theory of photon transport in leaf canopies , 1989 .

[39]  Ranga B. Myneni,et al.  A Three-Dimensional Radiative Transfer Method for Optical Remote Sensing of Vegetated Land Surfaces , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[40]  David L.B. Jupp,et al.  An analytical and computationally efficient reflectance model for leaf canopies , 1993 .

[41]  Richard L. Thompson,et al.  A computer graphics based model for scattering from objects of arbitrary shapes in the optical region , 1991 .

[42]  Alan H. Strahler,et al.  Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing , 1992, IEEE Trans. Geosci. Remote. Sens..

[43]  J. Roujean,et al.  A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data , 1992 .

[44]  Alan H. Strahler,et al.  Vegetation canopy reflectance modeling—recent developments and remote sensing perspectives∗ , 1997 .

[45]  Darrel L. Williams,et al.  An off-nadir-pointing imaging spectroradiometer for terrestrial ecosystem studies , 1991, IEEE Trans. Geosci. Remote. Sens..