Anisotropic simplicial meshing using local convex functions

We present a novel method to generate high-quality simplicial meshes with specified anisotropy. Given a surface or volumetric domain equipped with a Riemannian metric that encodes the desired anisotropy, we transform the problem to one of functional approximation. We construct a convex function over each mesh simplex whose Hessian locally matches the Riemannian metric, and iteratively adapt vertex positions and mesh connectivity to minimize the difference between the target convex functions and their piecewise-linear interpolation over the mesh. Our method generalizes optimal Delaunay triangulation and leads to a simple and efficient algorithm. We demonstrate its quality and speed compared to state-of-the-art methods on a variety of domains and metrics.

[1]  Rémy Prost,et al.  Generic Remeshing of 3D Triangular Meshes with Metric-Dependent Discrete Voronoi Diagrams , 2008, IEEE Transactions on Visualization and Computer Graphics.

[2]  S. SIAMJ. ANISOTROPIC CENTROIDAL VORONOI TESSELLATIONS AND THEIR APPLICATIONS∗ , 2004 .

[3]  B. Lévy,et al.  L p Centroidal Voronoi Tessellation and its applications , 2010, SIGGRAPH 2010.

[4]  Dong-Ming Yan,et al.  Isotropic Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram , 2009, Comput. Graph. Forum.

[5]  Jonathan Richard Shewchuk,et al.  Aggressive Tetrahedral Mesh Improvement , 2007, IMR.

[6]  Baining Guo,et al.  Computing self-supporting surfaces by regular triangulation , 2013, ACM Trans. Graph..

[7]  S. Rusinkiewicz Estimating curvatures and their derivatives on triangle meshes , 2004 .

[8]  Mariette Yvinec,et al.  Variational tetrahedral meshing , 2005, ACM Trans. Graph..

[9]  Wenping Wang,et al.  Planar Hexagonal Meshing for Architecture , 2015, IEEE Transactions on Visualization and Computer Graphics.

[10]  Mathieu Desbrun,et al.  HOT: Hodge-optimized triangulations , 2011, ACM Trans. Graph..

[11]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[12]  LiuYang,et al.  Anisotropic simplicial meshing using local convex functions , 2014 .

[13]  Mathieu Desbrun,et al.  Weighted Triangulations for Geometry Processing , 2014, ACM Trans. Graph..

[14]  S. Amari,et al.  Curvature of Hessian manifolds , 2014 .

[15]  Mariette Yvinec,et al.  Comparison of algorithms for anisotropic meshing and adaptive refinement , 2008 .

[16]  Ronald Cools,et al.  An adaptive numerical cubature algorithm for simplices , 2003, TOMS.

[17]  Long Chen,et al.  Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm , 2007, Math. Comput..

[18]  Camille Wormser,et al.  Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation , 2009, SIGGRAPH 2009.

[19]  Pierre Alliez,et al.  Perturbing Slivers in 3D Delaunay Meshes , 2009, IMR.

[20]  Bruno Lévy,et al.  Variational Anisotropic Surface Meshing with Voronoi Parallel Linear Enumeration , 2012, IMR.

[21]  Olga Sorkine-Hornung,et al.  Frame fields , 2014, ACM Trans. Graph..

[22]  Xiangmin Jiao,et al.  Anisotropic mesh adaptation for evolving triangulated surfaces , 2006, Engineering with Computers.

[23]  Mariette Yvinec,et al.  Anisotropic Delaunay Mesh Generation , 2015, SIAM J. Comput..

[24]  Mathieu Desbrun,et al.  Modeling Across Scales: Discrete Geometric Structures in Homogenization and Inverse Homogenization , 2013 .

[25]  Szymon Rusinkiewicz,et al.  Estimating curvatures and their derivatives on triangle meshes , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[26]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[27]  Michael Holst,et al.  Efficient mesh optimization schemes based on Optimal Delaunay Triangulations , 2011 .

[28]  Bruno Lévy,et al.  Particle-based anisotropic surface meshing , 2013, ACM Trans. Graph..

[29]  Jonathan Richard Shewchuk,et al.  Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation , 2003, SCG '03.

[30]  Xiangmin Jiao,et al.  Surface Mesh Optimization, Adaption, and Untangling with High-Order Accuracy , 2012, IMR.

[31]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[32]  Pierre Alliez,et al.  Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation , 2009, ACM Trans. Graph..

[33]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[34]  Long Chen,et al.  Mesh Smoothing Schemes Based on Optimal Delaunay Triangulations , 2004, IMR.

[35]  Mariette Yvinec,et al.  Anisotropic Delaunay Meshes of Surfaces , 2015, TOGS.

[36]  Ashraf El-Hamalawi,et al.  Mesh Generation – Application to Finite Elements , 2001 .

[37]  LongChen,et al.  OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .

[38]  Tamal K. Dey,et al.  Anisotropic surface meshing , 2006, SODA '06.

[39]  B. Lévy,et al.  Lp Centroidal Voronoi Tessellation and its applications , 2010, ACM Trans. Graph..

[40]  M. Yvinec,et al.  Variational tetrahedral meshing , 2005, SIGGRAPH 2005.

[41]  Kenji Shimada,et al.  Anisotropic Triangulation of Parametric Surfaces via Close Packing of Ellipsoids , 2000, Int. J. Comput. Geom. Appl..

[42]  Mariette Yvinec,et al.  Locally uniform anisotropic meshing , 2008, SCG '08.

[43]  Steven J. Gortler,et al.  Orphan-Free Anisotropic Voronoi Diagrams , 2011, Discret. Comput. Geom..

[44]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[45]  J. Shewchuk What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures , 2002 .

[46]  Qiang Du,et al.  Anisotropic Centroidal Voronoi Tessellations and Their Applications , 2005, SIAM J. Sci. Comput..

[47]  C. Dobrzynski,et al.  Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations , 2008, IMR.