GEMS: The Surface Brightness and Surface Mass Density Evolution of Disk Galaxies

We combine HST imaging from the GEMS (Galaxy Evolution from Morphologies and SEDs) survey with photometric redshifts from COMBO-17 to explore the evolution of disk-dominated galaxies since z 1.1. The sample is composed of all GEMS galaxies with Sersic indices n < 2.5, derived from fits to the galaxy images. We account fully for selection effects through careful analysis of image simulations; we are limited by the depth of the redshift and HST data to the study of galaxies with MV -20, or equivalently, log 10. We find strong evolution in the magnitude-size scaling relation for galaxies with MV -20, corresponding to a brightening of ~1 mag arcsec-2 in rest-frame V band by z ~ 1. Yet disks at a given absolute magnitude are bluer and have lower stellar mass-to-light ratios at z ~ 1 than at the present day. As a result, our findings indicate weak or no evolution in the relation between stellar mass and effective disk size for galaxies with log 10 over the same time interval. This is strongly inconsistent with the most naive theoretical expectation, in which disk size scales in proportion to the halo virial radius, which would predict that disks are a factor of 2 denser at fixed mass at z ~ 1. The lack of evolution in the stellar mass-size relation is consistent with an inside-out growth of galaxy disks on average (galaxies increasing in size as they grow more massive), although we cannot rule out more complex evolutionary scenarios.

[1]  H. Rix,et al.  Toward an Understanding of the Rapid Decline of the Cosmic Star Formation Rate , 2005, astro-ph/0502246.

[2]  Chien Y. Peng,et al.  GEMS: Galaxy Evolution from Morphologies and SEDs , 2004 .

[3]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[4]  R. D. Jong Near-infrared and optical broadband surface photometry of 86 face-on disk dominated galaxies. ?;?? II. A two-dimensional method to determine bulge and disk parameters , 1996, astro-ph/9601002.

[5]  Takashi Ichikawa,et al.  GALAXY COLORS IN VARIOUS PHOTOMETRIC BAND SYSTEMS , 1995 .

[6]  K. Meisenheimer,et al.  Ultraviolet light from young stars in gems quasar host galaxies at 1.8 < z < 2.75 , 2004 .

[7]  Phillip James Edwin Peebles,et al.  Origin of the Angular Momentum of Galaxies , 1969 .

[8]  Hubble Space Telescope Imaging of the CFRS and LDSS Redshift Surveys. II. Structural Parameters and the Evolution of Disk Galaxies to Z approximately 1 , 1997, astro-ph/9712061.

[9]  J. Brinkmann,et al.  New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .

[10]  The Magnitude-Size Relation of Galaxies out to z ~ 1 , 1999, astro-ph/9902147.

[11]  G. Gilmore,et al.  The distribution of low-mass stars in the Galactic disc , 1993 .

[12]  S. Gelato,et al.  Formation of Disk Galaxies: Feedback and the Angular Momentum Problem , 1998, astro-ph/9801094.

[13]  Oxford,et al.  The COMBO-17 survey: Evolution of the galaxy luminosity function from 25,000 galaxies with 0.2 < z < 1.2 , 2002, astro-ph/0208345.

[14]  Modelling angular momentum history in dark matter haloes , 2001, astro-ph/0105168.

[15]  The Evolution of Disk Galaxies in the GOODS-South Field: Number Densities and Size Distribution* , 2004, astro-ph/0401483.

[16]  Large Disklike Galaxies at High Redshift , 2003, astro-ph/0306062.

[17]  K. Freeman On the disks of spiral and SO Galaxies , 1970 .

[18]  S. M. Fall,et al.  Formation and rotation of disc galaxies with haloes , 1980 .

[19]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[20]  M. Steinmetz,et al.  The hierarchical origin of galaxy morphologies , 2002, astro-ph/0202466.

[21]  H Germany,et al.  Did most present-day spirals form during the last 8 Gyr? - A formation history with violent episodes revealed by panchromatic observations , 2004, astro-ph/0410518.

[22]  Konrad Kuijken,et al.  THE LUMINOSITY-SIZE AND MASS-SIZE RELATIONS OF GALAXIES OUT TO z ~ 3 , 2004 .

[23]  H. M. P. Couchman,et al.  Star Formation, Supernova Feedback, and the Angular Momentum Problem in Numerical Cold Dark Matter Cosmogony: Halfway There? , 2001 .

[24]  A. Dekel,et al.  A Universal Angular Momentum Profile for Galactic Halos , 2000, astro-ph/0011001.

[25]  Max Tegmark,et al.  NYU-VAGC: a galaxy catalog based on new public surveys , 2004 .

[26]  O. Fèvre,et al.  15 Micron Infrared Space Observatory Observations of the 1415+52 Canada-France Redshift Survey Field: The Cosmic Star Formation Rate as Derived from Deep Ultraviolet, Optical, Mid-Infrared, and Radio Photometry , 1999 .

[27]  N. Vogt,et al.  The DEEP Groth Strip Survey. II. Hubble Space Telescope Structural Parameters of Galaxies in the Groth Strip , 2002, astro-ph/0205025.

[28]  Wolfgang Voges,et al.  The size distribution of galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0301527.

[29]  S. White,et al.  Simulations of dissipative galaxy formation in hierarchically clustering universes – II. Dynamics of the baryonic component in galactic haloes , 1994 .

[30]  R. Wechsler,et al.  The Origin of Angular Momentum in Dark Matter Halos , 2001, astro-ph/0105349.

[31]  J. Sommer-Larsen,et al.  Formation of Disk Galaxies: Warm Dark Matter and the Angular Momentum Problem , 1999, astro-ph/9912166.

[32]  E. D’Onghia,et al.  Bulgeless Galaxies and Their Angular Momentum Problem , 2004, astro-ph/0402504.

[33]  E. Bell,et al.  Stellar mass-to-light ratios and the Tully-Fisher relation , 2000, astro-ph/0011493.

[34]  M. Steinmetz,et al.  Dark Halo and Disk Galaxy Scaling Laws in Hierarchical Universes , 2000, astro-ph/0001003.

[35]  Shude Mao,et al.  The formation of galactic discs , 1997 .

[36]  Comparing spectroscopic and photometric stellar mass estimates , 2004, astro-ph/0410084.

[37]  A. Ferguson,et al.  Constraints on Galaxy Formation from Stars in the Far Outer Disk of M31 , 2001, astro-ph/0108116.

[38]  Ignacio Trujillo,et al.  Quantitative morphological analysis of the Hubble Deep Field North and Hubble Deep Field South – I. Early- and late-type luminosity–size relations of galaxies out to z∼ 1 , 2004 .

[39]  Mamoru Doi,et al.  Estimating Fixed-Frame Galaxy Magnitudes in the Sloan Digital Sky Survey , 2002, astro-ph/0205243.

[40]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[41]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[42]  R. Bender,et al.  The Tully-Fisher relation at intermediate redshift ⋆,⋆⋆ , 2003, astro-ph/0309263.

[43]  A. Cimatti,et al.  A catalogue of the Chandra Deep Field South with multi-colour classification and photometric redshifts from COMBO-17 , 2004, astro-ph/0403666.

[44]  L. Ho,et al.  Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.

[45]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[46]  C. Chiappini,et al.  The Chemical Evolution of the Galaxy: The Two-Infall Model , 1996, astro-ph/9609199.

[47]  France.,et al.  Chemo-spectrophotometric evolution of spiral galaxies — I. The model and the Milky Way , 1999, astro-ph/9902148.

[48]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[49]  M. Giavalisco,et al.  The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging , 2003, astro-ph/0309105.