Posynomial geometric programming with parametric uncertainty

Geometric programming provides a powerful tool for solving nonlinear problems where nonlinear relations can be well presented by exponential or power function. This paper develops a procedure to derive the lower and upper bounds of the objective of the posynomial geometric programming problem when the cost and constraint parameters are uncertain. The imprecise parameters are represented by ranges, instead of single values. An imprecise geometric program is transformed to a family of conventional geometric programs to calculate the objective value. The derived result is also in a range, where the objective value would appear. The ability of calculating the bounds of the objective value developed in this paper might help lead to more realistic modeling efforts in engineering design areas.

[1]  Jayant Rajgopal,et al.  Solving Posynomial Geometric Programming Problems via Generalized Linear Programming , 2002, Comput. Optim. Appl..

[2]  Cerry M. Klein,et al.  Optimal inventory policies under decreasing cost functions via geometric programming , 2001, Eur. J. Oper. Res..

[3]  Shu-Cherng Fang,et al.  Controlled dual perturbations for posynomial programs , 1988 .

[4]  Martin D. F. Wong,et al.  VLSI Circuit Performance Optimization by Geometric Programming , 2001, Ann. Oper. Res..

[5]  R. S. Dembo THE SENSITIVITY OF OPTIMAL ENGINEERING DESIGNS USING GEOMETRIC PROGRAMMING , 1980 .

[6]  J. C. Choi,et al.  Effectiveness of a geometric programming algorithm for optimization of machining economics models , 1996, Comput. Oper. Res..

[7]  Marietta J. Tretter,et al.  An Interval Arithmetic Approach to Sensitivity Analysis in Geometric Programming , 1987, Oper. Res..

[8]  K. Kortanek,et al.  A second order affine scaling algorithm for the geometric programming dual with logarithmic barrier , 1992 .

[9]  R. Dembo,et al.  Solution of Generalized Geometric Programs , 1975 .

[10]  Pradip Mandal,et al.  CMOS op-amp sizing using a geometric programming formulation , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[11]  R. Duffin,et al.  Geometric programming with signomials , 1973 .

[12]  D. Bricker,et al.  Investigation of path-following algorithms for signomial geometric programming problems , 1997 .

[13]  Yinyu Ye,et al.  An infeasible interior-point algorithm for solving primal and dual geometric programs , 1997, Math. Program..

[14]  Elmor L. Peterson,et al.  The Fundamental Relations between Geometric Programming Duality, Parametric Programming Duality, and Ordinary Lagrangian Duality , 2001, Ann. Oper. Res..

[15]  DaeSoo Kim,et al.  Optimal joint pricing and lot sizing with fixed and variable capacity , 1998, Eur. J. Oper. Res..

[16]  R. A. Cuninghame-Green,et al.  Applied geometric programming , 1976 .

[17]  P. N. Rao,et al.  Optimal selection of process parameters for turning operations in a CAPP system , 1997 .

[18]  J. Kyparisis Sensitivity analysis in geometric programming: Theory and computations , 1991 .

[19]  C. Scott,et al.  Allocation of resources in project management , 1995 .

[20]  Stephen P. Boyd,et al.  Optimal design of a CMOS op-amp via geometric programming , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[21]  Won J. Lee Determining Order Quantity and Selling Price by Geometric Programming: Optimal Solution, Bounds, and Sensitivity* , 1993 .

[22]  K. O. Kortanek,et al.  Controlled dual perturbations for central path trajectories in geometric programming , 1994 .

[23]  Clarence Zener,et al.  Geometric Programming : Theory and Application , 1967 .

[24]  D. Bricker,et al.  Posynomial geometric programming as a special case of semi-infinite linear programming , 1990 .

[25]  M. A. Hall,et al.  The analysis of an inventory control model using posynomial geometric programming , 1982 .

[26]  Manoranjan Maiti,et al.  A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity , 1997 .

[27]  T.C.E. Cheng,et al.  An Economic Order Quantity Model with Demand-Dependent Unit Production Cost and Imperfect Production Processes , 1991 .

[28]  Jayant Rajgopal,et al.  An alternative approach to the refined duality theory of geometric programming , 1992 .

[29]  C. Floudas,et al.  Global Optimization in Generalized Geometric Programming , 1997, Encyclopedia of Optimization.