A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues

This paper presents a filter-based artificial fish swarm algorithm for solving nonconvex constrained global optimization problems. Convergence to an $$\varepsilon $$ε-global minimizer is guaranteed. At each iteration $$k$$k, the algorithm requires a $$(\rho ^{(k)},\varepsilon ^{(k)})$$(ρ(k),ε(k))-global minimizer of a bound constrained bi-objective subproblem, where as $$k\rightarrow \infty $$k→∞, $$\rho ^{(k)}\rightarrow 0$$ρ(k)→0 gives the constraint violation tolerance and $$\varepsilon ^{(k)} \rightarrow \varepsilon $$ε(k)→ε is the error bound defining the accuracy required for the solution. The subproblems are solved by a population-based heuristic known as artificial fish swarm algorithm. Each subproblem relies on the approximate solution of the previous one, randomly generated new points to explore the search space for a global solution, and the filter methodology to accept non-dominated trial points. Convergence to a $$(\rho ^{(k)},\varepsilon ^{(k)})$$(ρ(k),ε(k))-global minimizer with probability one is guaranteed by probability theory. Preliminary numerical experiments show that the algorithm is very competitive when compared with known deterministic and stochastic methods.

[1]  Helio J. C. Barbosa,et al.  An adaptive constraint handling technique for differential evolution with dynamic use of variants in engineering optimization , 2011 .

[2]  Zhang Yan,et al.  A nonmonotone filter method for minimax problems , 2012 .

[3]  Ana Maria A. C. Rocha,et al.  An augmented Lagrangian fish swarm based method for global optimization , 2011, J. Comput. Appl. Math..

[4]  Afonso C. C. Lemonge,et al.  An Adaptive Penalty Method for Genetic Algorithms in Constrained Optimization Problems , 2008 .

[5]  Masao Fukushima,et al.  Derivative-Free Filter Simulated Annealing Method for Constrained Continuous Global Optimization , 2006, J. Glob. Optim..

[6]  Boglárka G.-Tóth,et al.  Introduction to Nonlinear and Global Optimization , 2010 .

[7]  Edite Manuela da G. P. Fernandes,et al.  Assessing the potential of interior point barrier filter line search methods: nonmonotone versus monotone approach , 2011 .

[8]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[9]  Min Huang,et al.  An Artificial Fish Swarm Algorithm Based and ABC Supported QoS Unicast Routing Scheme in NGI , 2006, ISPA Workshops.

[10]  José Mario Martínez,et al.  Global minimization using an Augmented Lagrangian method with variable lower-level constraints , 2010, Math. Program..

[11]  Kalyanmoy Deb,et al.  A genetic algorithm based augmented Lagrangian method for constrained optimization , 2012, Comput. Optim. Appl..

[12]  E. W. Karas,et al.  Local convergence of filter methods for equality constrained non-linear programming , 2010 .

[13]  Lino A. Costa,et al.  A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization , 2012, Appl. Math. Comput..

[14]  Edite M. G. P. Fernandes,et al.  Numerical study of augmented Lagrangian algorithms for constrained global optimization , 2011 .

[15]  José Mario Martínez,et al.  Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization , 2011, Computational Optimization and Applications.

[16]  Adel Nadjaran Toosi,et al.  Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications , 2012, Artificial Intelligence Review.

[17]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[18]  Jiann-Horng Lin,et al.  Evolutionary computation of unconstrained and constrained problems using a novel momentum-type particle swarm optimization , 2007 .

[19]  Ioannis G. Tsoulos,et al.  Solving constrained optimization problems using a novel genetic algorithm , 2009, Appl. Math. Comput..

[20]  Hitoshi Iba,et al.  Frontiers in Evolutionary Robotics , 2008 .

[21]  Wu,et al.  A Filter-Based Pattern Search Method for Unconstrained Optimization , 2006 .

[22]  P. Eberhard,et al.  Augmented Lagrangian Particle Swarm Optimization in Mechanism Design , 2007 .

[23]  Clóvis C. Gonzaga,et al.  Global Convergence of Filter Methods for Nonlinear Programming , 2008, SIAM J. Optim..

[24]  Erwie Zahara,et al.  Solving constrained optimization problems with hybrid particle swarm optimization , 2008 .

[25]  M. M. Ali,et al.  A local exploration-based differential evolution algorithm for constrained global optimization , 2009, Appl. Math. Comput..

[26]  Yong Wang,et al.  Optimal Multiuser Detection with Artificial Fish Swarm Algorithm , 2007, ICIC.

[27]  P. Toint,et al.  Global Convergence of a Non-monotone Trust-Region Filter Algorithm for Nonlinear Programming , 2006 .

[28]  D. Pu,et al.  A nonmonotone filter trust region method for the system of nonlinear equations , 2013 .

[29]  Dervis Karaboga,et al.  Artificial bee colony algorithm for large-scale problems and engineering design optimization , 2012, J. Intell. Manuf..

[30]  Waler Gómez,et al.  A filter algorithm for nonlinear semidefinite programming , 2010 .

[31]  R. Fletcher,et al.  A nonmonotone filter method for nonlinear optimization , 2012, Comput. Optim. Appl..

[32]  Pinar Civicioglu,et al.  A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms , 2013, Artificial Intelligence Review.

[33]  Carlos A. Coello Coello,et al.  Handling constraints using multiobjective optimization concepts , 2004 .

[34]  Ruben E. Perez,et al.  Constrained structural design optimization via a parallel augmented Lagrangian particle swarm optimization approach , 2011 .

[35]  Hezhi Luo,et al.  Convergence properties of augmented Lagrangian methods for constrained global optimization , 2008, Optim. Methods Softw..

[36]  Ana Maria A. C. Rocha,et al.  Novel Fish Swarm Heuristics for Bound Constrained Global Optimization Problems , 2011, ICCSA.

[37]  Jinyan Fan,et al.  A derivative-free filter method for solving nonlinear complementarity problems , 2005, Appl. Math. Comput..

[38]  M. M. Ali,et al.  An electromagnetism-like method for nonlinearly constrained global optimization , 2010, Comput. Math. Appl..

[39]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[40]  Michael N. Vrahatis,et al.  Memetic particle swarm optimization , 2007, Ann. Oper. Res..

[41]  Edite M. G. P. Fernandes,et al.  Interior point filter method for semi-infinite programming problems , 2011 .

[42]  Pu-yan Nie,et al.  A line search filter approach for the system of nonlinear equations , 2008, Comput. Math. Appl..

[43]  P. Toint,et al.  A brief history of filter methods. , 2007 .

[44]  Robert Michael Lewis,et al.  A Globally Convergent Augmented Lagrangian Pattern Search Algorithm for Optimization with General Constraints and Simple Bounds , 2002, SIAM J. Optim..

[45]  Min-Jea Tahk,et al.  A hybrid optimization method of evolutionary and gradient search , 2007 .

[46]  Daniel Scholz,et al.  Geometric branch-and-bound methods for constrained global optimization problems , 2013, J. Glob. Optim..

[47]  Abdel-Rahman Hedar,et al.  Filter-based genetic algorithm for mixed variable programming , 2011 .

[48]  Sven Leyffer,et al.  Nonlinear programming without a penalty function , 2002, Math. Program..

[49]  M. M. Ali,et al.  A penalty function-based differential evolution algorithm for constrained global optimization , 2012, Computational Optimization and Applications.

[50]  Zhong Jin,et al.  An Improved Line Search Filter Method for the System of Nonlinear Equations , 2012, J. Appl. Math..

[51]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[52]  Anthony Chen,et al.  Constraint handling in genetic algorithms using a gradient-based repair method , 2006, Comput. Oper. Res..

[53]  X. Q. Yang,et al.  Augmented Lagrangian functions for constrained optimization problems , 2012, J. Glob. Optim..

[54]  Stefan Ulbrich,et al.  A globally convergent primal-dual interior-point filter method for nonlinear programming , 2004, Math. Program..

[55]  Nicholas I. M. Gould,et al.  A Multidimensional Filter Algorithm for Nonlinear Equations and Nonlinear Least-Squares , 2004, SIAM J. Optim..

[56]  Charles Audet,et al.  A Pattern Search Filter Method for Nonlinear Programming without Derivatives , 2001, SIAM J. Optim..

[57]  R. Durrett Probability: Theory and Examples , 1993 .

[58]  D. Pu,et al.  A nonmonotone filter trust region method for nonlinear constrained optimization , 2009 .

[59]  Claudia A. Sagastizábal,et al.  A bundle-filter method for nonsmooth convex constrained optimization , 2008, Math. Program..

[60]  Ling Wang,et al.  A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization , 2007, Appl. Math. Comput..

[61]  Gianni Di Pillo,et al.  An approach to constrained global optimization based on exact penalty functions , 2012, J. Glob. Optim..

[62]  Clóvis C. Gonzaga,et al.  A nonlinear programming algorithm based on non-coercive penalty functions , 2003, Math. Program..

[63]  M. Fernanda P. Costa,et al.  An Artificial Fish Swarm Filter-Based Method for Constrained Global Optimization , 2012, ICCSA.

[64]  J. Dennis,et al.  Direct Search Methods for Nonlinearly Constrained Optimization Using Filters and Frames , 2004 .

[65]  Garrison W. Greenwood,et al.  Convergence in Evolutionary Programs with Self-Adaptation , 2001, Evolutionary Computation.