An experimental–numerical method to determine the work-hardening of anisotropic ductile materials at large strains

Abstract The determination of work-hardening for ductile materials at large strains is difficult to perform in the framework of usual tensile tests because of the geometrical instability and necking in the specimen at relatively low strains. In this study, we propose a combination of experimental and numerical techniques to overcome this difficulty. Extruded aluminium alloys are used as a case since they exhibit marked plastic anisotropy. In the experiments, the minimum diameters of the axisymmetric tensile specimen in two normal directions are measured at high frequency by a laser gauge in the necking area together with the corresponding force, and the true stress–strain curve is found. The anisotropy of the material is determined from its crystallographic texture using the crystal plasticity theory. This data is used to represent the specimen by a 3D finite element model with phenomenological anisotropic plasticity. The experimental true stress–strain curve is then used as a target curve in an optimisation procedure for calibrating the hardening parameters of the material model. As a result, the equivalent stress–strain curve of the material up to fracture is obtained.

[1]  W. Hosford A Generalized Isotropic Yield Criterion , 1972 .

[2]  U. F. Kocks,et al.  Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties , 1998 .

[3]  Kathrin Abendroth,et al.  Nonlinear Finite Elements For Continua And Structures , 2016 .

[4]  P. Lipinski,et al.  Plasticity of metallic polycrystals under complex loading paths , 1987 .

[5]  F. Barlat,et al.  General Orthotropic Yield Functions Based on Linear Stress Deviator Transformations , 2004 .

[6]  O. Hopperstad,et al.  Influence of Texture and Grain Shape on the Yield Surface in Aluminium Sheet Material Subjected to Large Deformations , 2011 .

[7]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[9]  P. Houtte,et al.  Plastic anisotropy and texture evolution during tensile testing of extruded aluminium profiles , 2005 .

[10]  Y. Ling,et al.  Uniaxial True Stress-Strain after Necking , 2004 .

[11]  T. Børvik,et al.  Effects of particles and solutes on strength, work-hardening and ductile fracture of aluminium alloys , 2014 .

[12]  D. Norris,et al.  A computer simulation of the tension test , 1978 .

[13]  Tadeusz Niezgoda,et al.  EVALUATION OF TRUE STRESS IN ENGINEERING MATERIALS USING OPTICAL DEFORMATION MEASUREMENT METHODS , 2015 .

[14]  Yield surfaces for textured polycrystals—II. Analytical approach , 1987 .

[15]  E. Voce,et al.  The relationship between stress and strain for homogeneous deformations , 1948 .

[16]  O. Engler,et al.  Introduction to texture analysis : macrotexture, microtexture and orientation mapping , 2000 .

[17]  Viggo Tvergaard,et al.  Flow Localization in the Plane Strain Tensile Test , 1981 .

[18]  Frédéric Barlat,et al.  Crystallographic texture, anisotropic yield surfaces and forming limits of sheet metals , 1987 .

[19]  R. Asaro,et al.  Finite element analysis of crystalline solids , 1985 .

[20]  Dirk Mohr,et al.  On the predictive capabilities of the shear modified Gurson and the modified Mohr–Coulomb fracture models over a wide range of stress triaxialities and Lode angles , 2011 .

[21]  J. D. Embury,et al.  A model of ductile fracture based on the nucleation and growth of voids , 1981 .

[22]  E. H. Lee,et al.  Finite‐Strain Elastic—Plastic Theory with Application to Plane‐Wave Analysis , 1967 .

[23]  T. Børvik,et al.  On the plastic anisotropy of an aluminium alloy and its influence on constrained multiaxial flow , 2011 .

[24]  Mica Grujicic,et al.  Crystal plasticity analysis of earing in deep-drawn OFHC copper cups , 2002 .

[25]  L. Delannay,et al.  A texture discretization technique adapted to polycrystalline aggregates with non-uniform grain size , 2006 .

[26]  Tore Børvik,et al.  Evaluation of identification methods for YLD2004-18p , 2008 .

[27]  L. Anand,et al.  Crystallographic texture evolution in bulk deformation processing of FCC metals , 1992 .

[28]  Frédéric Barlat,et al.  Linear transfomation-based anisotropic yield functions , 2005 .

[29]  O. Hopperstad,et al.  Behaviour of extruded aluminium alloys under proportional and non-proportional strain paths , 2009 .

[30]  P. Lipinski,et al.  Numerical study of the influence of microstructure on subsequent yield surfaces of polycrystalline materials , 2004 .

[31]  J. Hutchinson,et al.  Bounds and self-consistent estimates for creep of polycrystalline materials , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[32]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[33]  Diego J. Celentano,et al.  Experimental and numerical analysis of the tensile test using sheet specimens , 2004 .

[34]  F. Barlat,et al.  Prediction of tricomponent plane stress yield surfaces and associated flow and failure behavior of strongly textured f.c.c. polycrystalline sheets , 1987 .

[35]  F. Barlat,et al.  Yield function development for aluminum alloy sheets , 1997 .

[36]  Odd Sture Hopperstad,et al.  Description of plastic anisotropy in AA6063-T6 using the crystal plasticity finite element method , 2012 .

[37]  J. Jonas,et al.  Yield surfaces for textured polycrystals—I. Crystallographic approach , 1987 .

[38]  Qinglong Zhao,et al.  Crystal Plasticity Calculations of Mechanical Anisotropy of Aluminium Compared to Experiments and to Yield Criterion Fittings , 2012 .

[39]  Odd Sture Hopperstad,et al.  Influence of texture and grain structure on strain localisation and formability for almgsi alloys , 2008 .

[40]  Alan Needleman,et al.  A numerical study of necking in circular cylindrical bar , 1972 .

[41]  Jacques Besson,et al.  A yield function for anisotropic materials Application to aluminum alloys , 2004 .

[42]  F. Barlat,et al.  Macroscopic anisotropy in AA5019A sheets , 2000 .

[43]  V. Schulze,et al.  Crystallographic texture approximation by quadratic programming , 2006 .

[44]  G. Mirone,et al.  Role of stress triaxiality in elastoplastic characterization and ductile failure prediction , 2007 .

[45]  M. Considére Mémoire sur l'emploi du fer et de l'acier dans les constructions , 1885 .

[46]  G. Taylor The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical , 1934 .

[47]  Zhen Li,et al.  Numerical analysis of the stress-strain curve and fracture initiation for ductile material , 1994 .