The physiological and pathophysiological roles of the autophagy lysosomal system in the conventional aqueous humor outflow pathway: More than cellular clean up

[1]  P. Pattabiraman,et al.  Cathepsin K Regulates Intraocular Pressure by Modulating Extracellular Matrix Remodeling and Actin-Bundling in the Trabecular Meshwork Outflow Pathway , 2021, Cells.

[2]  P. Codogno,et al.  Links between autophagy and tissue mechanics. , 2021, Journal of cell science.

[3]  Nektarios Tavernarakis,et al.  Autophagy in healthy aging and disease , 2021, Nature Aging.

[4]  Weijing Kong,et al.  Glaucoma in mucopolysaccharidoses , 2021, Orphanet Journal of Rare Diseases.

[5]  M. Coletta,et al.  Dexamethasone Downregulates Autophagy through Accelerated Turn-Over of the Ulk-1 Complex in a Trabecular Meshwork Cells Strain: Insights on Steroid-Induced Glaucoma Pathogenesis , 2021, International journal of molecular sciences.

[6]  Wei Zhu,et al.  Piezo2 downregulation via the Cre-lox system affects aqueous humor dynamics in mice , 2021, Molecular vision.

[7]  Jonathan D. Smith,et al.  Quantitative trait locus mapping identifies the Gpnmb gene as a modifier of mouse macrophage lysosome function , 2021, Scientific Reports.

[8]  M. Shim,et al.  Primary cilia and the reciprocal activation of AKT and SMAD2/3 regulate stretch-induced autophagy in trabecular meshwork cells , 2021, Proceedings of the National Academy of Sciences.

[9]  J. Salazar,et al.  The Role of Autophagy in Eye Diseases , 2021, Life.

[10]  V. Sheffield,et al.  Autophagy stimulation reduces ocular hypertension in a murine glaucoma model via autophagic degradation of mutant myocilin , 2021, JCI insight.

[11]  M. Hébert,et al.  Autophagy, tissue repair, and fibrosis: a delicate balance. , 2021, Matrix biology : journal of the International Society for Matrix Biology.

[12]  M. Shim,et al.  Cathepsin B Localizes in the Caveolae and Participates in the Proteolytic Cascade in Trabecular Meshwork Cells. Potential New Drug Target for the Treatment of Glaucoma , 2020, Journal of clinical medicine.

[13]  M. Cattaneo,et al.  Autophagy in the Regulation of Tissue Differentiation and Homeostasis , 2020, Frontiers in Cell and Developmental Biology.

[14]  Michael L. De Ieso,et al.  Piezo1 channels mediate trabecular meshwork mechanotransduction and promote aqueous fluid outflow , 2020, The Journal of physiology.

[15]  Ruikang K. Wang,et al.  Aqueous outflow regulation – 21st century concepts , 2020, Progress in Retinal and Eye Research.

[16]  N. Mizushima,et al.  Autophagy in Human Diseases. , 2020, The New England journal of medicine.

[17]  P. Codogno,et al.  Fluid flow-induced shear stress controls the metabolism of proximal tubule kidney epithelial cells through primary cilium-dependent lipophagy and mitochondria biogenesis. , 2020, Autophagy.

[18]  J. Vranka,et al.  Normal and glaucomatous outflow regulation , 2020, Progress in Retinal and Eye Research.

[19]  M. Shim,et al.  Autophagy in the Aging and Experimental Ocular Hypertensive Mouse Model , 2020, Investigative ophthalmology & visual science.

[20]  M. Ke,et al.  Protective Effects of Rapamycin on Trabecular Meshwork Cells in Glucocorticoid-Induced Glaucoma Mice , 2020, Frontiers in Pharmacology.

[21]  M. Shim,et al.  The autophagic protein LC3 translocates to the nucleus and localizes in the nucleolus associated to NUFIP1 in response to cyclic mechanical stress , 2020, Autophagy.

[22]  D. Gutterman,et al.  Vascular autophagy in health and disease , 2020, Basic Research in Cardiology.

[23]  F. Forouzandeh,et al.  SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence , 2020, Autophagy.

[24]  Md. Abdul Alim Al-Bari A current view of molecular dissection in autophagy machinery , 2020, Journal of Physiology and Biochemistry.

[25]  T. Choi,et al.  Roles of Autophagy in Oxidative Stress , 2020, International journal of molecular sciences.

[26]  Yang Sun,et al.  Optogenetic stimulation of phosphoinositides reveals a critical role of primary cilia in eye pressure regulation , 2020, Science Advances.

[27]  W. Stamer,et al.  Shear Stress in Schlemm’s Canal as a Sensor of Intraocular Pressure , 2020, Scientific Reports.

[28]  Neena Singh,et al.  TGFβ2-Hepcidin Feed-Forward Loop in the Trabecular Meshwork Implicates Iron in Glaucomatous Pathology , 2020, Investigative ophthalmology & visual science.

[29]  P. Codogno,et al.  Primary cilium-dependent autophagy drafts PIK3C2A to generate PtdIns3P in response to shear stress , 2020, Autophagy.

[30]  R. Yao,et al.  Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles , 2020, Autophagy.

[31]  N. Kalupahana,et al.  Autophagy in metabolic syndrome: breaking the wheel by targeting the renin–angiotensin system , 2020, Cell Death & Disease.

[32]  D. Sabatini,et al.  mTOR at the nexus of nutrition, growth, ageing and disease , 2020, Nature Reviews Molecular Cell Biology.

[33]  Jen-Hung Wang,et al.  Anterior Chamber Angles in Different Types of Mucopolysaccharidoses. , 2020, American journal of ophthalmology.

[34]  M. Graef,et al.  Mechanisms of Autophagy in Metabolic Stress Response. , 2020, Journal of molecular biology.

[35]  N. Mizushima The ATG conjugation systems in autophagy. , 2019, Current opinion in cell biology.

[36]  Xiaorui Zhao,et al.  Autophagy and Age-Related Eye Diseases , 2019, BioMed research international.

[37]  Neena Singh,et al.  Local synthesis of hepcidin in the anterior segment of the eye: A novel observation with physiological and pathological implications. , 2019, Experimental eye research.

[38]  M. Shim,et al.  Transcriptome analysis reveals autophagy as regulator of TGFβ/Smad-induced fibrogenesis in trabecular meshwork cells , 2019, Scientific Reports.

[39]  S. Walker,et al.  Autophagosome biogenesis machinery. , 2019, Journal of molecular biology.

[40]  A. Ashkenazi,et al.  The Nucleolus as a Proteostasis Regulator. , 2019, Trends in cell biology.

[41]  U. Hampel,et al.  Ophthalmological Findings in Mucopolysaccharidoses , 2019, Journal of clinical medicine.

[42]  P. Libby,et al.  Differential Roles of Cysteinyl Cathepsins in TGF-β Signaling and Tissue Fibrosis , 2019, iScience.

[43]  T. Leonard,et al.  Lipid-dependent Akt-ivity: where, when, and how , 2019, Biochemical Society transactions.

[44]  Astrid S. Pfister Emerging Role of the Nucleolar Stress Response in Autophagy , 2019, Front. Cell. Neurosci..

[45]  S. Chintala,et al.  Investigations on the Role of the Fibrinolytic Pathway on Outflow Facility Regulation , 2019, Investigative ophthalmology & visual science.

[46]  D. Klionsky,et al.  Watch What You (Self-) Eat: Autophagic Mechanisms that Modulate Metabolism. , 2019, Cell metabolism.

[47]  B. Turk,et al.  Cysteine Cathepsins and Their Extracellular Roles: Shaping the Microenvironment , 2019, Cells.

[48]  D. Green,et al.  LC3-associated phagocytosis at a glance , 2019, Journal of Cell Science.

[49]  W. Stamer,et al.  A model of the oscillatory mechanical forces in the conventional outflow pathway , 2019, Journal of the Royal Society Interface.

[50]  M. van Eijk,et al.  Glycoprotein Non-Metastatic Protein B: An Emerging Biomarker for Lysosomal Dysfunction in Macrophages , 2018, International journal of molecular sciences.

[51]  Sharad Kumar,et al.  Autophagy-dependent cell death , 2018, Cell Death & Differentiation.

[52]  A. Crandall,et al.  TREK-1 channels regulate pressure sensitivity and calcium signaling in trabecular meshwork cells , 2018, The Journal of general physiology.

[53]  J. Debnath,et al.  Autophagy and the cell biology of age-related disease , 2018, Nature Cell Biology.

[54]  Guido Kroemer,et al.  Spermidine: a physiological autophagy inducer acting as an anti-aging vitamin in humans? , 2018, Autophagy.

[55]  S. Park,et al.  Adjustment of the lysosomal-mitochondrial axis for control of cellular senescence , 2018, Ageing Research Reviews.

[56]  P. Liton,et al.  Contribution of autophagy to ocular hypertension and neurodegeneration in the DBA/2J spontaneous glaucoma mouse model , 2018, Cell Death Discovery.

[57]  Y. Sakai,et al.  Three Distinct Types of Microautophagy Based on Membrane Dynamics and Molecular Machineries , 2018, BioEssays : news and reviews in molecular, cellular and developmental biology.

[58]  I. Dikic,et al.  Mechanism and medical implications of mammalian autophagy , 2018, Nature reviews. Molecular cell biology.

[59]  A. Cuervo,et al.  The coming of age of chaperone-mediated autophagy , 2018, Nature Reviews Molecular Cell Biology.

[60]  Gregory A. Wyant,et al.  NUFIP1 is a ribosome receptor for starvation-induced ribophagy , 2018, Science.

[61]  N. Mizushima A brief history of autophagy from cell biology to physiology and disease , 2018, Nature Cell Biology.

[62]  A. Clark,et al.  BMP and Activin Membrane Bound Inhibitor Regulates the Extracellular Matrix in the Trabecular Meshwork , 2018, Investigative ophthalmology & visual science.

[63]  Y. Maejima,et al.  The Role of Autophagy in the Heart. , 2018, Annual review of physiology.

[64]  A. Thorburn,et al.  Targeting autophagy in cancer , 2017, Nature Reviews Cancer.

[65]  I. Dikič Proteasomal and Autophagic Degradation Systems. , 2017, Annual review of biochemistry.

[66]  J. Hurley,et al.  Mechanisms of Autophagy Initiation. , 2017, Annual review of biochemistry.

[67]  M. Sardiello,et al.  AKT modulates the autophagy-lysosome pathway via TFEB , 2017, Cell cycle.

[68]  P. Liton,et al.  Autophagy and mechanotransduction in outflow pathway cells , 2017, Experimental eye research.

[69]  T. Yoshimori,et al.  New insights into autophagosome–lysosome fusion , 2017, Journal of Cell Science.

[70]  M. Johnstone,et al.  Aqueous outflow - A continuum from trabecular meshwork to episcleral veins , 2017, Progress in Retinal and Eye Research.

[71]  R. Nixon,et al.  Disorders of lysosomal acidification—The emerging role of v-ATPase in aging and neurodegenerative disease , 2016, Ageing Research Reviews.

[72]  V. Gorgoulis,et al.  DNA Damage Response and Autophagy: A Meaningful Partnership , 2016, Front. Genet..

[73]  P. Boya,et al.  Autophagy in the eye: Development, degeneration, and aging , 2016, Progress in Retinal and Eye Research.

[74]  C. Givens,et al.  Endothelial Mechanosignaling: Does One Sensor Fit All? , 2016, Antioxidants & redox signaling.

[75]  L. Pedersen,et al.  Endocytic Control of Cellular Signaling at the Primary Cilium. , 2016, Trends in biochemical sciences.

[76]  G. Prestwich,et al.  TRPV4 regulates calcium homeostasis, cytoskeletal remodeling, conventional outflow and intraocular pressure in the mammalian eye , 2016, Scientific Reports.

[77]  J. Vissers,et al.  Elevation of glycoprotein nonmetastatic melanoma protein B in type 1 Gaucher disease patients and mouse models , 2016, FEBS open bio.

[78]  P. Codogno,et al.  Primary-cilium-dependent autophagy controls epithelial cell volume in response to fluid flow , 2016, Nature Cell Biology.

[79]  P. Liton The autophagic lysosomal system in outflow pathway physiology and pathophysiology. , 2016, Experimental eye research.

[80]  B. Yue,et al.  Optineurin: The autophagy connection. , 2016, Experimental eye research.

[81]  M. van Eijk,et al.  Gpnmb Is a Potential Marker for the Visceral Pathology in Niemann-Pick Type C Disease , 2016, PloS one.

[82]  A. Clark,et al.  Animal models of glucocorticoid-induced glaucoma. , 2015, Experimental eye research.

[83]  Harun-Or Rashid,et al.  ER stress: Autophagy induction, inhibition and selection , 2015, Autophagy.

[84]  I. Pang,et al.  Strain and Age Effects on Aqueous Humor Dynamics in the Mouse. , 2015, Investigative ophthalmology & visual science.

[85]  J. Debnath,et al.  Autophagy at the crossroads of catabolism and anabolism , 2015, Nature Reviews Molecular Cell Biology.

[86]  J. Vranka,et al.  Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. , 2015, Experimental eye research.

[87]  P. Liton,et al.  Autophagic dysregulation in glaucomatous trabecular meshwork cells. , 2015, Biochimica et biophysica acta.

[88]  Jin Tan,et al.  ROS and Autophagy: Interactions and Molecular Regulatory Mechanisms , 2015, Cellular and Molecular Neurobiology.

[89]  C. R. Ethier,et al.  Biomechanics of Schlemm's canal endothelium and intraocular pressure reduction , 2015, Progress in Retinal and Eye Research.

[90]  Dylan T Burnette,et al.  Intracellular and extracellular forces drive primary cilia movement , 2015, Proceedings of the National Academy of Sciences.

[91]  C. R. Ethier,et al.  Shear stress-triggered nitric oxide release from Schlemm's canal cells. , 2014, Investigative ophthalmology & visual science.

[92]  J. Joyce,et al.  Pericellular proteolysis in cancer , 2014, Genes & development.

[93]  F. Cecconi,et al.  Oxidative stress and autophagy: the clash between damage and metabolic needs , 2014, Cell Death and Differentiation.

[94]  Yong-feng Yang,et al.  Differential effects of caveolin-1 and -2 knockdown on aqueous outflow and altered extracellular matrix turnover in caveolin-silenced trabecular meshwork cells. , 2014, Investigative ophthalmology & visual science.

[95]  A. Izzotti,et al.  Oxidative Damage and Autophagy in the Human Trabecular Meshwork as Related with Ageing , 2014, PloS one.

[96]  T. Graham,et al.  Impairment of autophagy in endothelial cells prevents shear-stress-induced increases in nitric oxide bioavailability. , 2014, Canadian journal of physiology and pharmacology.

[97]  Myung-Shik Lee,et al.  Autophagy—a key player in cellular and body metabolism , 2014, Nature Reviews Endocrinology.

[98]  P. Liton,et al.  MTOR-independent induction of autophagy in trabecular meshwork cells subjected to biaxial stretch. , 2014, Biochimica et biophysica acta.

[99]  A. Cuervo,et al.  Autophagy and human disease: emerging themes. , 2014, Current opinion in genetics & development.

[100]  Neha Aggarwal,et al.  Cathepsin B: Multiple roles in cancer , 2014, Proteomics. Clinical applications.

[101]  Zhisheng Jiang,et al.  Autophagy Regulates Vascular Endothelial Cell eNOS and ET-1 Expression Induced by Laminar Shear Stress in an Ex Vivo Perfused System , 2014, Annals of Biomedical Engineering.

[102]  Val C Sheffield,et al.  Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma. , 2014, The Journal of clinical investigation.

[103]  T. Corson,et al.  Primary cilia signaling mediates intraocular pressure sensation , 2014, Proceedings of the National Academy of Sciences.

[104]  S. Marchand-Adam,et al.  Regulation of TGF-β1-driven Differentiation of Human Lung Fibroblasts , 2014, The Journal of Biological Chemistry.

[105]  Y. Qiu,et al.  Cellular Processing of Myocilin , 2014, PloS one.

[106]  X (inbo) Li,et al.  Intraocular pressure homeostasis: maintaining balance in a high-pressure environment. , 2014, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[107]  P. Liton,et al.  Ascorbic acid modulation of iron homeostasis and lysosomal function in trabecular meshwork cells. , 2014, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[108]  I. C. Lloyd,et al.  Anterior segment OCT imaging in mucopolysaccharidoses type I, II, and VI , 2014, Eye.

[109]  A. Cuervo,et al.  Chaperone-mediated autophagy: roles in disease and aging , 2013, Cell Research.

[110]  P. Codogno,et al.  Functional interaction between autophagy and ciliogenesis , 2013, Nature.

[111]  S. Sarkar,et al.  Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. , 2013, Biochemical Society transactions.

[112]  Shizuo Akira,et al.  Autophagy in infection, inflammation and immunity , 2013, Nature Reviews Immunology.

[113]  R. Nixon,et al.  The role of autophagy in neurodegenerative disease , 2013, Nature Medicine.

[114]  Joshua T. Morgan,et al.  Substratum stiffness and latrunculin B modulate the gene expression of the mechanotransducers YAP and TAZ in human trabecular meshwork cells. , 2013, Experimental eye research.

[115]  L. Larsen,et al.  TGF-Signaling Is Associated with Endocytosis at the Pocket Region of the Primary Cilium , 2013 .

[116]  J. Höhfeld,et al.  Chaperone-assisted proteostasis is essential for mechanotransduction in mammalian cells , 2013, Communicative & integrative biology.

[117]  D. Klionsky,et al.  The Mechanism and Physiological Function of Macroautophagy , 2013, Journal of Innate Immunity.

[118]  P. Liton,et al.  Lysosomal basification and decreased autophagic flux in oxidatively stressed trabecular meshwork cells , 2013, Autophagy.

[119]  P. Rabinovitch,et al.  mTOR is a key modulator of ageing and age-related disease , 2013, Nature.

[120]  Christopher J Murphy,et al.  Role of substratum stiffness in modulating genes associated with extracellular matrix and mechanotransducers YAP and TAZ. , 2013, Investigative ophthalmology & visual science.

[121]  Xuejun Jiang,et al.  The ULK1 complex , 2013, Autophagy.

[122]  B. Blagg,et al.  Glucose-regulated Protein 94 Triage of Mutant Myocilin through Endoplasmic Reticulum-associated Degradation Subverts a More Efficient Autophagic Clearance Mechanism* , 2012, The Journal of Biological Chemistry.

[123]  J. King Mechanical stress meets autophagy: potential implications for physiology and pathology. , 2012, Trends in molecular medicine.

[124]  Yong-feng Yang,et al.  Perturbation of hyaluronan synthesis in the trabecular meshwork and the effects on outflow facility. , 2012, Investigative ophthalmology & visual science.

[125]  D. Epstein,et al.  Up-Regulated Expression of Extracellular Matrix Remodeling Genes in Phagocytically Challenged Trabecular Meshwork Cells , 2012, PloS one.

[126]  E. White Role of autophagy in cancer , 2012 .

[127]  M. Nebbioso,et al.  Trabecular Meshwork in Normal and Pathological Eyes , 2012, Ultrastructural pathology.

[128]  J. Bao,et al.  Microautophagy: lesser-known self-eating , 2012, Cellular and Molecular Life Sciences.

[129]  Craig E. Higgins,et al.  Complex Regulation of the Pericellular Proteolytic Microenvironment during Tumor Progression and Wound Repair: Functional Interactions between the Serine Protease and Matrix Metalloproteinase Cascades , 2012, Biochemistry research international.

[130]  Matthew E. Downs,et al.  The mechanics of the primary cilium: an intricate structure with complex function. , 2012, Journal of biomechanics.

[131]  P. Codogno,et al.  Canonical and non-canonical autophagy: variations on a common theme of self-eating? , 2011, Nature Reviews Molecular Cell Biology.

[132]  R. Insall,et al.  The induction of autophagy by mechanical stress , 2011, Autophagy.

[133]  Z. Werb,et al.  Extracellular matrix degradation and remodeling in development and disease. , 2011, Cold Spring Harbor perspectives in biology.

[134]  V. Deretic,et al.  Autophagy‐based unconventional secretory pathway for extracellular delivery of IL‐1β , 2011, The EMBO journal.

[135]  D. Corella,et al.  Association between a SLC23A2 gene variation, plasma vitamin C levels, and risk of glaucoma in a Mediterranean population , 2011, Molecular vision.

[136]  Michael G. Anderson,et al.  Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma. , 2011, The Journal of clinical investigation.

[137]  J. Vranka,et al.  Segmental versican expression in the trabecular meshwork and involvement in outflow facility. , 2011, Investigative ophthalmology & visual science.

[138]  M. Czaja Functions of autophagy in hepatic and pancreatic physiology and disease. , 2011, Gastroenterology.

[139]  G. Kroemer,et al.  Autophagy for tissue homeostasis and neuroprotection. , 2011, Current opinion in cell biology.

[140]  D. Epstein,et al.  Intralysosomal iron induces lysosomal membrane permeabilization and cathepsin D-mediated cell death in trabecular meshwork cells exposed to oxidative stress. , 2010, Investigative ophthalmology & visual science.

[141]  F. Boisvert,et al.  The Nucleolus under Stress , 2010, Molecular Cell.

[142]  E. Bottinger,et al.  BAMBI Is Expressed in Endothelial Cells and Is Regulated by Lysosomal/Autolysosomal Degradation , 2010, PloS one.

[143]  N. Mizushima,et al.  Autophagy in mammalian development and differentiation , 2010, Nature Cell Biology.

[144]  R. Xavier,et al.  Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease , 2010, Proceedings of the National Academy of Sciences.

[145]  I. Pang,et al.  Adenoviral gene transfer of active human transforming growth factor-{beta}2 elevates intraocular pressure and reduces outflow facility in rodent eyes. , 2010, Investigative ophthalmology & visual science.

[146]  C. Kenyon The genetics of ageing , 2010, Nature.

[147]  M. Hoch,et al.  Chaperone-Assisted Selective Autophagy Is Essential for Muscle Maintenance , 2010, Current Biology.

[148]  G. Bjørkøy,et al.  Nucleocytoplasmic Shuttling of p62/SQSTM1 and Its Role in Recruitment of Nuclear Polyubiquitinated Proteins to Promyelocytic Leukemia Bodies* , 2009, The Journal of Biological Chemistry.

[149]  Shuhei Yoshida,et al.  Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells. , 2009, Cancer research.

[150]  Sterling C. Johnson,et al.  Caloric Restriction Delays Disease Onset and Mortality in Rhesus Monkeys , 2009, Science.

[151]  Marco Pahor,et al.  Rapamycin fed late in life extends lifespan in genetically heterogeneous mice , 2009, Nature.

[152]  K. Brix,et al.  Release of endo-lysosomal cathepsins B, D, and L from IEC6 cells in a cell culture model mimicking intestinal manipulation , 2009, Biological chemistry.

[153]  She Chen,et al.  ULK1·ATG13·FIP200 Complex Mediates mTOR Signaling and Is Essential for Autophagy* , 2009, Journal of Biological Chemistry.

[154]  M. T. Leite,et al.  Ascorbic acid concentration is reduced in the secondary aqueous humour of glaucomatous patients , 2009, Clinical & experimental ophthalmology.

[155]  D. WuDunn Mechanobiology of trabecular meshwork cells. , 2009, Experimental eye research.

[156]  Ernst R Tamm,et al.  The trabecular meshwork outflow pathways: structural and functional aspects. , 2009, Experimental eye research.

[157]  E. Lütjen-Drecoll,et al.  Structural changes of the trabecular meshwork in different kinds of glaucoma. , 2009, Experimental eye research.

[158]  D. Epstein,et al.  Alterations in gene expression induced by cyclic mechanical stress in trabecular meshwork cells , 2009, Molecular vision.

[159]  T. Acott,et al.  Specialized podosome- or invadopodia-like structures (PILS) for focal trabecular meshwork extracellular matrix turnover. , 2008, Investigative ophthalmology & visual science.

[160]  Bonnie F. Sloane,et al.  Lysosomal cathepsin B participates in the podosome-mediated extracellular matrix degradation and invasion via secreted lysosomes in v-Src fibroblasts. , 2008, Cancer research.

[161]  J. Biswas,et al.  Ocular manifestation of storage diseases , 2008, Current opinion in ophthalmology.

[162]  D. Epstein,et al.  Cultured porcine trabecular meshwork cells display altered lysosomal function when subjected to chronic oxidative stress. , 2008, Investigative ophthalmology & visual science.

[163]  P. Liton,et al.  Stress Response of the Trabecular Meshwork , 2008, Journal of glaucoma.

[164]  D. Klionsky Autophagy revisited: A conversation with Christian de Duve , 2008, Autophagy.

[165]  J. Leza,et al.  Expression of nitrotyrosine and oxidative consequences in the trabecular meshwork of patients with primary open-angle glaucoma. , 2008, Investigative ophthalmology & visual science.

[166]  M. Pinazo-Durán,et al.  Oxidative Stress in Primary Open-angle Glaucoma , 2008, Journal of glaucoma.

[167]  T. Acott,et al.  Effects of modifiers of glycosaminoglycan biosynthesis on outflow facility in perfusion culture. , 2008, Investigative ophthalmology & visual science.

[168]  G. Taraboletti,et al.  Cathepsin B mediates the pH-dependent proinvasive activity of tumor-shed microvesicles. , 2008, Neoplasia.

[169]  J. Ge,et al.  Mitochondrial complex I defect induces ROS release and degeneration in trabecular meshwork cells of POAG patients: protection by antioxidants. , 2008, Investigative ophthalmology & visual science.

[170]  Daniel J. Klionsky,et al.  Autophagy fights disease through cellular self-digestion , 2008, Nature.

[171]  K. Brix,et al.  Cysteine cathepsins: cellular roadmap to different functions. , 2008, Biochimie.

[172]  Guido Kroemer,et al.  Autophagy in the Pathogenesis of Disease , 2008, Cell.

[173]  D. Epstein,et al.  Sustained stress response after oxidative stress in trabecular meshwork cells , 2007, Molecular vision.

[174]  U. Hopfer,et al.  Force-response considerations in ciliary mechanosensation. , 2007, Biophysical journal.

[175]  N. Agarwal,et al.  Oxidative Stress in Glaucoma: A Burden of Evidence , 2007, Journal of glaucoma.

[176]  J. Roth,et al.  Sodium 4-phenylbutyrate acts as a chemical chaperone on misfolded myocilin to rescue cells from endoplasmic reticulum stress and apoptosis. , 2007, Investigative Ophthalmology and Visual Science.

[177]  A. Izzotti,et al.  Glaucomatous outflow pathway and oxidative stress. , 2007, Experimental eye research.

[178]  U. Brunk,et al.  Autophagy, organelles and ageing , 2007, The Journal of pathology.

[179]  D. Epstein,et al.  Genome-wide expression profile of human trabecular meshwork cultured cells, nonglaucomatous and primary open angle glaucoma tissue. , 2006, Molecular vision.

[180]  D. DiMaio,et al.  Senescence‐associated β‐galactosidase is lysosomal β‐galactosidase , 2006 .

[181]  P. Kaufman,et al.  Changes in aqueous humor dynamics with age and glaucoma , 2005, Progress in Retinal and Eye Research.

[182]  D. Epstein,et al.  Cellular senescence in the glaucomatous outflow pathway , 2005, Experimental Gerontology.

[183]  A. Izzotti,et al.  Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma. , 2005, Archives of ophthalmology.

[184]  Bonnie F. Sloane,et al.  Cathepsin B and tumor proteolysis: contribution of the tumor microenvironment. , 2005, Seminars in cancer biology.

[185]  Bonnie F. Sloane,et al.  Caveolin-1 mediates the expression and localization of cathepsin B, pro-urokinase plasminogen activator and their cell-surface receptors in human colorectal carcinoma cells , 2005, Journal of Cell Science.

[186]  M. Johnstone The Aqueous Outflow System as a Mechanical Pump: Evidence from Examination of Tissue and Aqueous Movement in Human and Non-Human Primates , 2004, Journal of glaucoma.

[187]  C. R. Ethier,et al.  Biomechanics of Schlemm's canal endothelial cells: influence on F-actin architecture. , 2004, Biophysical journal.

[188]  D. Vollrath,et al.  Reversal of mutant myocilin non-secretion and cell killing: implications for glaucoma , 2004 .

[189]  W. Hur,et al.  Accumulation of mutant myocilins in ER leads to ER stress and potential cytotoxicity in human trabecular meshwork cells. , 2003, Biochemical and biophysical research communications.

[190]  T. Acott,et al.  Signaling pathways used in trabecular matrix metalloproteinase response to mechanical stretch. , 2003, Investigative ophthalmology & visual science.

[191]  M. Kruszewski,et al.  Labile iron pool: the main determinant of cellular response to oxidative stress. , 2003, Mutation research.

[192]  D. Hall,et al.  Autophagy Genes Are Essential for Dauer Development and Life-Span Extension in C. elegans , 2003, Science.

[193]  J. Magaud,et al.  Association of increased autophagic inclusions labeled for β-galactosidase with fibroblastic aging , 2003, Experimental Gerontology.

[194]  P. Kaufman,et al.  Aqueous humor dynamics and trabecular meshwork and anterior ciliary muscle morphologic changes with age in rhesus monkeys. , 2003, Investigative ophthalmology & visual science.

[195]  Jing Zhou,et al.  Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells , 2003, Nature Genetics.

[196]  N. Mizushima,et al.  Autophagosome formation in mammalian cells. , 2002, Cell structure and function.

[197]  U. Schlötzer-Schrehardt,et al.  Ascorbic acid concentration is reduced in the aqueous humor of patients with exfoliation syndrome. , 2002, American journal of ophthalmology.

[198]  Young H. Kwon,et al.  Variations in the myocilin gene in patients with open-angle glaucoma. , 2002, Archives of ophthalmology.

[199]  J. Joseph,et al.  Stimulatory effect of vitamin C on autophagy in glial cells , 2002, Journal of neurochemistry.

[200]  Randy L. Johnson,et al.  Targeted Disruption of the Myocilin Gene (Myoc) Suggests that Human Glaucoma-Causing Mutations Are Gain of Function , 2001, Molecular and Cellular Biology.

[201]  H. Lijnen Elements of the Fibrinolytic System , 2001, Annals of the New York Academy of Sciences.

[202]  T. Acott,et al.  Effects of mechanical stretching on trabecular matrix metalloproteinases. , 2001, Investigative ophthalmology & visual science.

[203]  T. Borrás,et al.  Inefficient processing of an olfactomedin-deficient myocilin mutant: potential physiological relevance to glaucoma. , 2001, Biochemical and biophysical research communications.

[204]  Takeshi Noda,et al.  LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing , 2000, The EMBO journal.

[205]  D. Kurz,et al.  Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. , 2000, Journal of cell science.

[206]  W. Alward The genetics of open-angle glaucoma: The story of GLC1A and myocilin , 2000, Eye.

[207]  R. Wordinger,et al.  Effects of glucocorticoids on the trabecular meshwork: towards a better understanding of glaucoma , 1999, Progress in Retinal and Eye Research.

[208]  Michael D. George,et al.  A protein conjugation system essential for autophagy , 1998, Nature.

[209]  D. Epstein,et al.  Mechanical stretch alters the actin cytoskeletal network and signal transduction in human trabecular meshwork cells. , 1998, Investigative ophthalmology & visual science.

[210]  A. Spector,et al.  The aqueous humor is capable of generating and degrading H2O2. , 1998, Investigative ophthalmology & visual science.

[211]  T H Roderick,et al.  Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. , 1998, Investigative ophthalmology & visual science.

[212]  P. Palmberg,et al.  Glycosaminoglycan stratification of the juxtacanalicular tissue in normal and primary open-angle glaucoma. , 1996, Investigative ophthalmology & visual science.

[213]  D. Epstein,et al.  Effect of age on superoxide dismutase activity of human trabecular meshwork. , 1996, Investigative ophthalmology & visual science.

[214]  P. Palmberg,et al.  Glycosaminoglycans of the human trabecular meshwork in primary open-angle glaucoma. , 1996, Investigative ophthalmology & visual science.

[215]  D. Klionsky,et al.  Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway , 1995, The Journal of cell biology.

[216]  R. Tripathi,et al.  Aqueous Humor in Glaucomatous Eyes Contains an Increased Level of TGF-β2 , 1994 .

[217]  M. Schlumpberger,et al.  Isolation of autophagocytosis mutants of Saccharomyces cerevisiae , 1994, FEBS letters.

[218]  Y. Ohsumi,et al.  Isolation and characterization of autophagy‐defective mutants of Saccharomyces cerevisiae , 1993, FEBS letters.

[219]  S. Tsuboi,et al.  Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction , 1992, The Journal of cell biology.

[220]  D. Klionsky,et al.  Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway , 1992, The Journal of cell biology.

[221]  A. Sommer,et al.  Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey. , 1991, JAMA.

[222]  C. Buller,et al.  Human trabecular meshwork phagocytosis. Observations in an organ culture system. , 1990, Investigative ophthalmology & visual science.

[223]  G. Sarkis,et al.  Decline in protease activities with age in the nematode caenorhabditis elegans , 1988, Mechanisms of Ageing and Development.

[224]  M. Sherwood,et al.  Phagocytosis by trabecular meshwork cells: sequence of events in cats and monkeys. , 1988, Experimental eye research.

[225]  K. Bridges,et al.  Ascorbic acid inhibits lysosomal autophagy of ferritin. , 1987, The Journal of biological chemistry.

[226]  E. V. Van Buskirk,et al.  Trabecular meshwork glycosaminoglycans in human and cynomolgus monkey eye. , 1985, Investigative ophthalmology & visual science.

[227]  J. Polansky,et al.  Age-related changes in trabecular meshwork cellularity. , 1981, Investigative ophthalmology & visual science.

[228]  I. Grierson,et al.  Pressure-induced changes in the ultrastructure of the endothelium lining Schlemm's canal. , 1975, American journal of ophthalmology.

[229]  I. Grierson,et al.  The fine structure of the trabecular meshwork at graded levels of intraocular pressure. (1) Pressure effects within the near-physiological range (8-30 mmHg). , 1975, Experimental eye research.

[230]  M. Johnstone,et al.  Pressure-dependent changes in structures of the aqueous outflow system of human and monkey eyes. , 1973, American journal of ophthalmology.

[231]  D. Coleman,et al.  Direct-recorded intraocular pressure variations in a human subject. , 1969, Archives of ophthalmology.

[232]  E. Linnér,et al.  THE PRESSURE LOWERING EFFECT OF ASCORBIC ACID IN OCULAR HYPERTENSION , 1969, Acta ophthalmologica.

[233]  C. Behl,et al.  Ubiquitin-Dependent And Independent Signals In Selective Autophagy. , 2016, Trends in cell biology.

[234]  E. Tamm,et al.  Intraocular Pressure and the Mechanisms Involved in Resistance of the Aqueous Humor Flow in the Trabecular Meshwork Outflow Pathways. , 2015, Progress in molecular biology and translational science.

[235]  Haoxing Xu,et al.  Lysosomal physiology. , 2015, Annual review of physiology.

[236]  S. Ryter,et al.  Autophagy in pulmonary diseases. , 2012, Annual review of physiology.

[237]  M. Komatsu,et al.  Pathophysiological role of autophagy: lesson from autophagy-deficient mouse models. , 2011, Experimental animals.

[238]  N. Mizushima Physiological functions of autophagy. , 2009, Current topics in microbiology and immunology.

[239]  U. Hopfer,et al.  Mechanical stimulation of primary cilia. , 2008, Frontiers in bioscience : a journal and virtual library.

[240]  Bonnie F. Sloane,et al.  Cathepsin B localizes to plasma membrane caveolae of differentiating myoblasts and is secreted in an active form at physiological pH , 2006, Biological chemistry.

[241]  D. Epstein,et al.  Effects of elevated intraocular pressure on outflow facility and TIGR/MYOC expression in perfused human anterior segments. , 2002, Investigative ophthalmology & visual science.

[242]  A. Amon,et al.  Erratum: The nucleolus: The magician's hat for cell cycle tricks (Current Opinion in Cell Biology (2000) 12 (372-377)) , 2000 .

[243]  A. Cuervo,et al.  How do intracellular proteolytic systems change with age? , 1998, Frontiers in bioscience : a journal and virtual library.

[244]  T. Li,et al.  Age-related changes in trabecular cells in vitro. , 1997, Experimental eye research.

[245]  N. Delamere Ascorbic acid and the eye. , 1996, Sub-cellular biochemistry.