Enhanced hydrogen sorption kinetics of co-doped MgH2 hydrides

[1]  A. Benyoussef,et al.  First principle study of hydrogen storage in doubly substituted Mg based hydrides Mg5MH12 (M = B, Li) and Mg4BLiH12 , 2016 .

[2]  A. Benyoussef,et al.  Study of doping effects with 3d and 4d-transition metals on the hydrogen storage properties of MgH2 , 2016 .

[3]  A. El Kenz,et al.  First principle study of hydrogen storage in doubly substituted Mg based hydrides , 2015 .

[4]  A. Benyoussef,et al.  The hydrogen ab/desorption kinetic properties of doped magnesium hydride MgH2 systems by first principles calculations and kinetic Monte Carlo simulations , 2015 .

[5]  A. Umićević,et al.  Hydrogen diffusion in MgH2 doped with Ti, Mn and Fe , 2015 .

[6]  A. Benyoussef,et al.  First principle calculations for improving desorption temperature in Mg16H32 doped with Ca, Sr and Ba elements , 2014, Bulletin of Materials Science.

[7]  A. Benyoussef,et al.  Kinetic Monte Carlo and density functional study of hydrogen diffusion in magnesium hydride MgH2 , 2013 .

[8]  J. Keller,et al.  5 Years of hydrogen storage research in the U.S. DOE Metal Hydride Center of Excellence (MHCoE) , 2013 .

[9]  A. Benyoussef,et al.  Hydrogen storage of Mg1−xMxH2 (M = Ti, V, Fe) studied using first-principles calculations , 2012 .

[10]  C. Milanese,et al.  Hydrogen sorption performance of MgH 2 doped with mesoporous nickel- and cobalt-based oxides , 2011 .

[11]  S. Lebègue,et al.  Transition metal doped MgH2: A material to potentially combine fuel-cell and battery technologies , 2010 .

[12]  Katsuhiko Hirose,et al.  Handbook of hydrogen storage : new materials for future energy storage , 2010 .

[13]  D. Fruchart,et al.  Electronic structure and stability of new FCC magnesium hydrides Mg7MH16 and Mg6MH16 (M = Ti, V, Nb): An ab initio study , 2010 .

[14]  A. Janotti,et al.  Formation and migration of charged native point defects in MgH 2 : First-principles calculations , 2009 .

[15]  Wei-Bing Zhang,et al.  Energetics and electronic properties of Mg7TMH16 (TM=Sc, Ti, V, Y, Zr, Nb): An ab initio study , 2009 .

[16]  D. Sholl,et al.  Hydrogen diffusion in MgH2 and NaMgH3 via concerted motions of charged defects , 2008 .

[17]  Takayuki Ichikawa,et al.  Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. , 2005, The journal of physical chemistry. B.

[18]  J. Charbonnier,et al.  Hydrogenation of transition element additives (Ti, V) during ball milling of magnesium hydride , 2004 .

[19]  Zhengxiao Guo,et al.  Mechanical alloying and electronic simulations of (MgH2+M) systems (M=Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage , 2004 .

[20]  J. Bobet,et al.  Improvement in hydrogen sorption properties of Mg by reactive mechanical grinding with Cr2O3, Al2O3 and CeO2 , 2002 .

[21]  Robert Schulz,et al.  Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems , 1999 .

[22]  K. Yvon,et al.  Structure of the high pressure phase γ-MgH2 by neutron powder diffraction , 1999 .

[23]  Helmut Eschrig,et al.  FULL-POTENTIAL NONORTHOGONAL LOCAL-ORBITAL MINIMUM-BASIS BAND-STRUCTURE SCHEME , 1999 .

[24]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.