Distinctive Image Features from Scale-Invariant Keypoints

This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are ...

[1]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[2]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[3]  Hans P. Moravec Rover Visual Obstacle Avoidance , 1981, IJCAI.

[4]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[5]  James L. Crowley,et al.  A Representation for Shape Based on Peaks and Ridges in the Difference of Low-Pass Transform , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[7]  William Grimson,et al.  Object recognition by computer - the role of geometric constraints , 1991 .

[8]  David G. Lowe,et al.  Fitting Parameterized Three-Dimensional Models to Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Chris Harris,et al.  Geometry from visual motion , 1993 .

[10]  Sunil Arya,et al.  Approximate nearest neighbor queries in fixed dimensions , 1993, SODA '93.

[11]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[12]  Brian V. Funt,et al.  Color Constant Color Indexing , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Rachid Deriche,et al.  A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..

[14]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Nathan Intrator,et al.  Complex cells and Object Recognition , 1997 .

[16]  David G. Lowe,et al.  Shape indexing using approximate nearest-neighbour search in high-dimensional spaces , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[18]  R. Nelson,et al.  Large-scale tests of a keyed, appearance-based 3-D object recognition system , 1998, Vision Research.

[19]  Ali Shokoufandeh,et al.  View-based object recognition using saliency maps , 1999, Image Vis. Comput..

[20]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[21]  Pietro Perona,et al.  Unsupervised Learning of Models for Recognition , 2000, ECCV.

[22]  Adam Baumberg,et al.  Reliable feature matching across widely separated views , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[23]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[24]  David G. Lowe,et al.  Local feature view clustering for 3D object recognition , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[25]  James J. Little,et al.  Vision-based mobile robot localization and mapping using scale-invariant features , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[26]  Matthew A. Brown,et al.  Invariant Features from Interest Point Groups , 2002, BMVC.

[27]  James J. Little,et al.  Global localization using distinctive visual features , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Andrew Zisserman,et al.  Multi-view Matching for Unordered Image Sets, or "How Do I Organize My Holiday Snaps?" , 2002, ECCV.

[29]  Krystian Mikolajczyk,et al.  Detection of local features invariant to affines transformations , 2002 .

[30]  C. D. Krause,et al.  Complex in Cells , 2002 .

[31]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[32]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[33]  K. Mikolajczyk Detection of local features invariant to affine transformations : application to matching and recognition , 2002 .

[34]  Gustavo Carneiro,et al.  Phase-Based Local Features , 2002, ECCV.

[35]  Wolfgang Heidrich,et al.  Cloth Motion Capture , 2003, SIGGRAPH '03.

[36]  Cordelia Schmid,et al.  Shape recognition with edge-based features , 2003, BMVC.

[37]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[38]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[39]  David G. Lowe,et al.  Probabilistic Models of Appearance for 3-D Object Recognition , 2000, International Journal of Computer Vision.

[40]  Olivier D. Faugeras,et al.  The fundamental matrix: Theory, algorithms, and stability analysis , 2004, International Journal of Computer Vision.

[41]  Bernt Schiele,et al.  Recognition without Correspondence using Multidimensional Receptive Field Histograms , 2004, International Journal of Computer Vision.

[42]  Ronen Basri,et al.  Recognition Using Region Correspondences , 1997, International Journal of Computer Vision.

[43]  Yiannis Aloimonos,et al.  Active vision , 2004, International Journal of Computer Vision.

[44]  Tony Lindeberg,et al.  Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention , 1993, International Journal of Computer Vision.