Both RyRs and TPCs are required for NAADP-induced intracellular Ca2+ release

[1]  A. Galione A primer of NAADP-mediated Ca(2+) signalling: From sea urchin eggs to mammalian cells. , 2015, Cell calcium.

[2]  Yigong Shi,et al.  Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution , 2014, Nature.

[3]  J. Frank,et al.  Structure of a mammalian ryanodine receptor , 2014, Nature.

[4]  S. Muallem,et al.  Convergent regulation of the lysosomal two‐pore channel‐2 by Mg2+, NAADP, PI(3,5)P2 and multiple protein kinases , 2014, The EMBO journal.

[5]  O. Petersen,et al.  The role of Ca2+ in the pathophysiology of pancreatitis , 2013, The Journal of physiology.

[6]  David E. Clapham,et al.  mTOR Regulates Lysosomal ATP-Sensitive Two-Pore Na+ Channels to Adapt to Metabolic State , 2013, Cell.

[7]  Michael X. Zhu,et al.  TPC Proteins Are Phosphoinositide- Activated Sodium-Selective Ion Channels in Endosomes and Lysosomes , 2012, Cell.

[8]  A. Guse Linking NAADP to Ion Channel Activity: A Unifying Hypothesis , 2012, Science Signaling.

[9]  O. Gerasimenko,et al.  Aberrant Ca(2+) signalling through acidic calcium stores in pancreatic acinar cells. , 2011, Cell calcium.

[10]  Alexander M. Lewis,et al.  Analogues of the Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Antagonist Ned-19 Indicate Two Binding Sites on the NAADP Receptor* , 2009, The Journal of Biological Chemistry.

[11]  N. Dun,et al.  Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling , 2009, The Journal of cell biology.

[12]  M. Hohenegger,et al.  NAADP-mediated Ca2+ signaling via type 1 ryanodine receptor in T cells revealed by a synthetic NAADP antagonist , 2009, Proceedings of the National Academy of Sciences.

[13]  O. Petersen,et al.  Fatty acids, alcohol and fatty acid ethyl esters: toxic Ca2+ signal generation and pancreatitis. , 2009, Cell calcium.

[14]  A. Galione,et al.  NAADP mobilizes calcium from acidic organelles through two-pore channels , 2009, Nature.

[15]  Alexander M. Lewis,et al.  Identification of a chemical probe for NAADP by virtual screening , 2009, Nature chemical biology.

[16]  O. Petersen,et al.  Polarized calcium signaling in exocrine gland cells. , 2008, Annual review of physiology.

[17]  R. Billington,et al.  PPADS is a reversible competitive antagonist of the NAADP receptor. , 2007, Cell calcium.

[18]  I. Prior,et al.  Activation of trypsinogen in large endocytic vacuoles of pancreatic acinar cells , 2007, Proceedings of the National Academy of Sciences.

[19]  J. Deitmer,et al.  Calcium mobilization by nicotinic acid adenine dinucleotide phosphate (NAADP) in rat astrocytes. , 2006, Cell calcium.

[20]  O. Petersen,et al.  NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area , 2006, Journal of Cell Science.

[21]  Andreas H. Guse,et al.  Functional Ryanodine Receptor Expression Is Required for NAADP-mediated Local Ca2+ Signaling in T-lymphocytes* , 2005, Journal of Biological Chemistry.

[22]  Alexander M. Lewis,et al.  Role of NAADP and cADPR in the Induction and Maintenance of Agonist-Evoked Ca2+ Spiking in Mouse Pancreatic Acinar Cells , 2005, Current Biology.

[23]  Ole H Petersen,et al.  The NAADP receptor: new receptors or new regulation? , 2005, Molecular interventions.

[24]  A. Galione,et al.  Organelle Selection Determines Agonist-specific Ca2+ Signals in Pancreatic Acinar and β Cells* , 2004, Journal of Biological Chemistry.

[25]  A. Tepikin,et al.  The endoplasmic reticulum as one continuous Ca2+ pool: visualization of rapid Ca2+ movements and equilibration , 2000, The EMBO journal.

[26]  O. Gerasimenko,et al.  Two different but converging messenger pathways to intracellular Ca2+ release: the roles of nicotinic acid adenine dinucleotide phosphate, cyclic ADP‐ribose and inositol trisphosphate , 2000, The EMBO journal.

[27]  K. Mikoshiba,et al.  Facilitation of NMDAR-Independent LTP and Spatial Learning in Mutant Mice Lacking Ryanodine Receptor Type 3 , 1999, Neuron.

[28]  O. Gerasimenko,et al.  Calcium uptake via endocytosis with rapid release from acidifying endosomes , 1998, Current Biology.

[29]  W. Chin,et al.  Role of Ca2+/K+ ion exchange in intracellular storage and release of Ca2+ , 1998, Nature.

[30]  Min Goo Lee,et al.  Polarized Expression of Ca2+ Channels in Pancreatic and Salivary Gland Cells , 1997, The Journal of Biological Chemistry.

[31]  R. Wojcikiewicz,et al.  Evidence That Zymogen Granules Are Not a Physiologically Relevant Calcium Pool , 1997, The Journal of Biological Chemistry.

[32]  A. Tepikin,et al.  Ca2+ Flow via Tunnels in Polarized Cells: Recharging of Apical Ca2+ Stores by Focal Ca2+ Entry through Basal Membrane Patch , 1997, Cell.

[33]  P. Pacaud,et al.  The effect of PPADS as an antagonist of inositol (1,4,5)trisphosphate induced intracellular calcium mobilization , 1996, British journal of pharmacology.

[34]  O. Gerasimenko,et al.  Inositol Trisphosphate and Cyclic ADP-Ribose–Mediated Release of Ca2+ from Single Isolated Pancreatic Zymogen Granules , 1996, Cell.

[35]  M. Fallon,et al.  Localization of the type 3 inositol 1,4,5-trisphosphate receptor in the Ca2+ wave trigger zone of pancreatic acinar cells. , 1994, The Journal of biological chemistry.

[36]  G. Burnstock,et al.  PPADS selectively antagonizes P2X‐purinoceptor‐mediated responses in the rabbit urinary bladder , 1993, British journal of pharmacology.

[37]  O. Petersen,et al.  Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate , 1993, Cell.

[38]  Y. Miyashita,et al.  Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas , 1993, Cell.

[39]  H. Bäumert,et al.  PPADS, a novel functionally selective antagonist of P2 purinoceptor-mediated responses. , 1992, European journal of pharmacology.

[40]  O. Petersen,et al.  Receptor-activated cytoplasmic Ca2+ spiking mediated by inositol trisphosphate is due to Ca2+-induced Ca2+ release , 1990, Cell.

[41]  S. Yoo,et al.  Inositol 1,4,5-trisphosphate-triggered Ca2+ release from bovine adrenal medullary secretory vesicles. , 1990, The Journal of biological chemistry.

[42]  F. Thévenod,et al.  Modulation of intracellular free Ca2+ concentration by IP3-sensitive and IP3-insensitive nonmitochondrial Ca2+ pools. , 1989, Cell calcium.

[43]  M. J. Berridge,et al.  Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate , 1983, Nature.

[44]  O. Petersen,et al.  Transport of calcium in the perfused submandibular gland of the cat , 1972, The Journal of physiology.

[45]  Z. Selinger,et al.  ATP-dependent calcium uptake by microsomal preparations from rat parotid and submaxillary glands. , 1970, Biochimica et biophysica acta.

[46]  E. Bayerdörffer,et al.  Effect of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas , 2005, The Journal of Membrane Biology.