Robust kernel principal component analysis and classification
暂无分享,去创建一个
[1] Congde Lu,et al. A robust kernel PCA algorithm , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).
[2] Mia Hubert,et al. LIBRA: a MATLAB library for robust analysis , 2005 .
[3] D. G. Simpson,et al. Robust principal component analysis for functional data , 2007 .
[4] Michiel Debruyne,et al. An outlier map for Support Vector Machine classification , 2010 .
[5] P. Rousseeuw,et al. Alternatives to the Median Absolute Deviation , 1993 .
[6] Vincenzo Verardi. Robust principal component analysis in Stata , 2009 .
[7] P. Rousseeuw. Least Median of Squares Regression , 1984 .
[8] Minh Hoai Nguyen. 1-1-2008 Robust Kernel Principal Component Analysis , 2012 .
[9] Tatsuya Akutsu,et al. Protein homology detection using string alignment kernels , 2004, Bioinform..
[10] Guoying Li,et al. Projection-Pursuit Approach to Robust Dispersion Matrices and Principal Components: Primary Theory and Monte Carlo , 1985 .
[11] Johan A. K. Suykens,et al. Kernel Component Analysis Using an Epsilon-Insensitive Robust Loss Function , 2008, IEEE Transactions on Neural Networks.
[12] D. Donoho,et al. Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .
[13] Hengjian Cui,et al. Asymptotic distributions of principal components based on robust dispersions , 2003 .
[14] Jian Yang,et al. Essence of kernel Fisher discriminant: KPCA plus LDA , 2004, Pattern Recognit..
[15] Mia Hubert,et al. ROBPCA: A New Approach to Robust Principal Component Analysis , 2005, Technometrics.
[16] Mia Hubert,et al. Robust PCA and classification in biosciences , 2004, Bioinform..
[17] Robin Sibson,et al. What is projection pursuit , 1987 .
[18] P. Rousseeuw,et al. A fast algorithm for the minimum covariance determinant estimator , 1999 .
[19] W. Stahel. Robuste Schätzungen: infinitesimale Optimalität und Schätzungen von Kovarianzmatrizen , 1981 .
[20] P. Filzmoser,et al. Algorithms for Projection-Pursuit Robust Principal Component Analysis , 2007 .
[21] John W. Tukey,et al. A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.
[22] Jian Yang,et al. KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[23] Dechang Chen,et al. Gene Expression Data Classification With Kernel Principal Component Analysis , 2005, Journal of biomedicine & biotechnology.
[24] M. Hubert,et al. A fast method for robust principal components with applications to chemometrics , 2002 .
[25] Mia Hubert,et al. Fast and robust discriminant analysis , 2004, Comput. Stat. Data Anal..
[26] B. Scholkopf,et al. Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).
[27] Qianqiu Li,et al. Taxonomic utility of a phylogenetic analysis of phosphoglycerate kinase proteins of Archaea, Bacteria, and Eukaryota: insights by Bayesian analyses. , 2005, Molecular phylogenetics and evolution.
[28] Sven Serneels,et al. Robustified least squares support vector classification , 2009 .
[29] Mia Hubert,et al. The influence function of the Stahel–Donoho covariance estimator of smallest outlyingness , 2009 .
[30] Christophe Croux,et al. A Fast Algorithm for Robust Principal Components Based on Projection Pursuit , 1996 .
[31] Mia Hubert,et al. Detecting influential observations in Kernel PCA , 2010, Comput. Stat. Data Anal..
[32] Ruben H. Zamar,et al. Robust Estimates of Location and Dispersion for High-Dimensional Datasets , 2002, Technometrics.
[33] Johan Suykens. Least Squares Support Vector Machines : an Overview , 2002 .
[34] Ricardo A. Maronna,et al. Principal Components and Orthogonal Regression Based on Robust Scales , 2005, Technometrics.
[35] Nello Cristianini,et al. Kernel Methods for Pattern Analysis , 2003, ICTAI.
[36] Johan A. K. Suykens,et al. Least Squares Support Vector Machines , 2002 .
[37] Christophe Croux,et al. High breakdown estimators for principal components: the projection-pursuit approach revisited , 2005 .
[38] Johan A. K. Suykens,et al. Least Squares Support Vector Machines , 2002 .
[39] Alexander J. Smola,et al. Learning with kernels , 1998 .
[40] Takio Kurita,et al. Robust De-noising by Kernel PCA , 2002, ICANN.
[41] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[42] J. Marden. Some robust estimates of principal components , 1999 .