Some Asymptotic Properties of the Spectrum of the Jacobi Ensemble

For the random eigenvalues with density corresponding to the Jacobi ensemble $$c \cdot \prod_{i -1, \beta > 0) $ a strong uniform approximation by the roots of the Jacobi polynomials is derived if the parameters $a, b,$ $\beta$ depend on $n$ and $n \to \infty$. Roughly speaking, the eigenvalues can be uniformly approximated by roots of Jacobi polynomials with parameters $((2a+2)/\beta -1, (2b+2)/\beta-1)$, where the error is of order $\{\log n/(a+b) \}^{1/4}$. These results are used to investigate the asymptotic properties of the corresponding spectral distribution if $n \to \infty$ and the parameters $a, b$ and $\beta$ vary with $n$. We also discuss further applications in the context of multivariate random $F$-matrices.

[1]  R. S. Varga,et al.  On the zeros of Jacobi polynomials _{}^{(_{},_{})}() , 1979 .

[2]  J. W. Silverstein The Limiting Eigenvalue Distribution of a Multivariate F Matrix , 1985 .

[3]  Benoit Collins Product of random projections, Jacobi ensembles and universality problems arising from free probability , 2005 .

[4]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[5]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[6]  R. Lippert,et al.  A matrix model for the -Jacobi ensemble , 2003 .

[7]  Z. Bai METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .

[8]  Arno B. J. Kuijlaars,et al.  The Asymptotic Zero Distribution of Orthogonal Polynomials with Varying Recurrence Coefficients , 1999 .

[9]  N. Rescher The Threefold Way , 1987 .

[10]  Alan Edelman,et al.  The Beta-Jacobi Matrix Model, the CS Decomposition, and Generalized Singular Value Problems , 2008, Found. Comput. Math..

[11]  R. Killip,et al.  Matrix models for circular ensembles , 2004, math/0410034.

[12]  J. W. Silverstein The Smallest Eigenvalue of a Large Dimensional Wishart Matrix , 1985 .

[13]  A. Edelman,et al.  Matrix models for beta ensembles , 2002, math-ph/0206043.

[14]  Holger Dette,et al.  Uniform approximation of eigenvalues in Laguerre and Hermite beta-ensembles by roots of orthogonal polynomials , 2007 .

[15]  M. Anshelevich,et al.  Introduction to orthogonal polynomials , 2003 .

[16]  Freeman J. Dyson,et al.  The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics , 1962 .

[17]  W. J. Studden,et al.  Some new asymptotic properties for the zeros of Jacobi, Laguerre, and Hermite polynomials , 1994, math/9406224.

[18]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .