Microwave heated polyol synthesis of carbon nanotubes supported Pt nanoparticles for methanol electrooxidation

[1]  S. Komarneni,et al.  Microwave‐Hydrothermal Synthesis of Monodispersed Nanophase α‐Fe2O3 , 2004 .

[2]  Qin Xin,et al.  Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells , 2003 .

[3]  Kwong‐Yu Chan,et al.  Water-in-Oil Microemulsion Synthesis of Platinum−Ruthenium Nanoparticles, Their Characterization and Electrocatalytic Properties , 2003 .

[4]  Zhaolin Liu,et al.  Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications , 2002 .

[5]  Sridhar Komarneni,et al.  Microwave - Polyol process for Pt and Ag nanoparticles , 2002 .

[6]  Volkmar M. Schmidt,et al.  Oxygen reduction at Pt and Pt70Ni30 in H2SO4/CH3OH solution , 2002 .

[7]  Qin Xin,et al.  Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell , 2002 .

[8]  Leong Ming Gan,et al.  Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells , 2002 .

[9]  Zhaolin Liu,et al.  Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions , 2002 .

[10]  A. Miyazaki,et al.  Preparation of Ru Nanoparticles Supported on γ-Al2O3 and Its Novel Catalytic Activity for Ammonia Synthesis , 2001 .

[11]  Hanfan Liu,et al.  Size control of polymer-stabilized ruthenium nanoparticles by polyol reduction , 2001 .

[12]  T. Fujimoto,et al.  Sonochemical preparation of single-dispersion metal nanoparticles from metal salts , 2001 .

[13]  V. Lordi,et al.  Method for Supporting Platinum on Single-Walled Carbon Nanotubes for a Selective Hydrogenation Catalyst , 2001 .

[14]  K. L. Tan,et al.  Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes , 2001 .

[15]  Jun-Jie Zhu,et al.  Preparation of monodispersed nanocrystallineCeO2 powders by microwave irradiation , 2001 .

[16]  W. Sugimoto,et al.  Size effects of ultrafine Pt–Ru particles on theelectrocatalytic oxidation of methanol , 2001 .

[17]  Hongjie Dai,et al.  Metal coating on suspended carbon nanotubes and its implication to metal–tube interaction , 2000 .

[18]  H. Matsumoto,et al.  Sonochemical Preparation and Catalytic Behavior of Highly Dispersed Palladium Nanoparticles on Alumina. , 2000 .

[19]  Jun-Jie Zhu,et al.  Microwave Assisted Preparation of CdSe, PbSe, and Cu2-xSe Nanoparticles , 2000 .

[20]  Hanfan Liu,et al.  Continuous Synthesis of Colloidal Metal Nanoclusters by Microwave Irradiation , 2000 .

[21]  Guo Qin Xu,et al.  Decoration of activated carbon nanotubes with copper and nickel , 2000 .

[22]  S. Grugeon,et al.  Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol , 1999 .

[23]  G. Xu,et al.  Electroless plating of metals onto carbon nanotubes activated by a single-step activation method , 1999 .

[24]  C. R. Martin,et al.  Metal-Nanocluster-Filled Carbon Nanotubes: Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production , 1999 .

[25]  Yu Weiyong,et al.  Synthesis of Nanoscale Platinum Colloids by Microwave Dielectric Heating , 1999 .

[26]  C. R. Martin,et al.  Carbon nanotubule membranes for electrochemical energy storage and production , 1998, Nature.

[27]  H. Chan,et al.  Platinum Deposition on Carbon Nanotubes via Chemical Modification , 1998 .

[28]  Ping Chen,et al.  Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a NiMgO catalyst , 1997 .

[29]  Pulickel M. Ajayan,et al.  Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis , 1994 .