The economy of brain network organization

The brain is expensive, incurring high material and metabolic costs for its size — relative to the size of the body — and many aspects of brain network organization can be mostly explained by a parsimonious drive to minimize these costs. However, brain networks or connectomes also have high topological efficiency, robustness, modularity and a 'rich club' of connector hubs. Many of these and other advantageous topological properties will probably entail a wiring-cost premium. We propose that brain organization is shaped by an economic trade-off between minimizing costs and allowing the emergence of adaptively valuable topological patterns of anatomical or functional connectivity between multiple neuronal populations. This process of negotiating, and re-negotiating, trade-offs between wiring cost and topological value continues over long (decades) and short (millisecond) timescales as brain networks evolve, grow and adapt to changing cognitive demands. An economical analysis of neuropsychiatric disorders highlights the vulnerability of the more costly elements of brain networks to pathological attack or abnormal development.

[1]  J. Winn,et al.  Brain , 1878, The Lancet.

[2]  W. Welker Why Does Cerebral Cortex Fissure and Fold , 1990 .

[3]  T. Deacon Rethinking mammalian brain evolution , 1990 .

[4]  HERBERT A. SIMON,et al.  The Architecture of Complexity , 1991 .

[5]  J L Ringo,et al.  Neuronal interconnection as a function of brain size. , 1991, Brain, behavior and evolution.

[6]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[7]  Acknowledgements , 1992, Experimental Gerontology.

[8]  C Cherniak,et al.  Component placement optimization in the brain , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  G. Edelman,et al.  A measure for brain complexity: relating functional segregation and integration in the nervous system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Young Mp,et al.  Component-placement optimization in the brain. , 1996 .

[11]  R. Desimone,et al.  Neural mechanisms for visual memory and their role in attention. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[12]  S. Rauch,et al.  Response and Habituation of the Human Amygdala during Visual Processing of Facial Expression , 1996, Neuron.

[13]  D. V. Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system , 1997, Nature.

[14]  J. Scannell Determining cortical landscapes , 1997, Nature.

[15]  D. V. van Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system. , 1997, Nature.

[16]  Rob R. de Ruyter van Steveninck,et al.  The metabolic cost of neural information , 1998, Nature Neuroscience.

[17]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[18]  Santiago Ramón y Cajal,et al.  Texture of the Nervous System of Man and the Vertebrates , 1999, Springer Vienna.

[19]  M. A. O'Neil,et al.  The connectional organization of the cortico-thalamic system of the cat. , 1999, Cerebral cortex.

[20]  T. Sejnowski,et al.  A universal scaling law between gray matter and white matter of cerebral cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  G Tononi,et al.  Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. , 2000, Cerebral cortex.

[22]  Bernhard Hellwig,et al.  A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex , 2000, Biological Cybernetics.

[23]  Mark A. Changizi,et al.  Principles underlying mammalian neocortical scaling , 2001, Biological Cybernetics.

[24]  P. Morosan,et al.  Probabilistic Mapping and Volume Measurement of Human Primary Auditory Cortex , 2001, NeuroImage.

[25]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[26]  S. Dehaene,et al.  Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework , 2001, Cognition.

[27]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[28]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[29]  Hawoong Jeong,et al.  Modeling the Internet's large-scale topology , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  B. Baars The conscious access hypothesis: origins and recent evidence , 2002, Trends in Cognitive Sciences.

[31]  Hod Lipson,et al.  ON THE ORIGIN OF MODULAR VARIATION , 2002, Evolution; international journal of organic evolution.

[32]  Olaf Sporns,et al.  Measuring information integration , 2003, BMC Neuroscience.

[33]  Vitaly A Klyachko,et al.  Connectivity optimization and the positioning of cortical areas , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Terrence J Sejnowski,et al.  Communication in Neuronal Networks , 2003, Science.

[35]  K. Kaski,et al.  Dynamics of market correlations: taxonomy and portfolio analysis. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  D. M I T R I Exact solution for the optimal neuronal layout problem , 2003 .

[37]  J. Allman,et al.  The Scaling of White Matter to Gray Matter in Cerebellum and Neocortex , 2003, Brain, Behavior and Evolution.

[38]  Dmitri B Chklovskii,et al.  Synaptic Connectivity and Neuronal Morphology Two Sides of the Same Coin , 2004, Neuron.

[39]  Raul Rodriguez-Esteban,et al.  Global optimization of cerebral cortex layout. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  G. Buzsáki,et al.  Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons , 2004, Trends in Neurosciences.

[41]  Marcus Kaiser,et al.  Modelling the development of cortical systems networks , 2004, Neurocomputing.

[42]  S. L. Wong,et al.  A Map of the Interactome Network of the Metazoan C. elegans , 2004, Science.

[43]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[44]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[45]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[46]  Hod Lipson,et al.  Networks, dynamics, and modularity. , 2004, Physical review letters.

[47]  D. Chklovskii,et al.  Maps in the brain: what can we learn from them? , 2004, Annual review of neuroscience.

[48]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[49]  R. Guimerà,et al.  The worldwide air transportation network: Anomalous centrality, community structure, and cities' global roles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[51]  G. Striedter Principles of brain evolution. , 2005 .

[52]  Benjamin J. Shannon,et al.  Molecular, Structural, and Functional Characterization of Alzheimer's Disease: Evidence for a Relationship between Default Activity, Amyloid, and Memory , 2005, The Journal of Neuroscience.

[53]  U. Alon,et al.  Spontaneous evolution of modularity and network motifs. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Alessandro Vespignani,et al.  The effects of spatial constraints on the evolution of weighted complex networks , 2005, physics/0504029.

[55]  G. Roth,et al.  Evolution of the brain and intelligence , 2005, Trends in Cognitive Sciences.

[56]  E. Bullmore,et al.  Neurophysiological architecture of functional magnetic resonance images of human brain. , 2005, Cerebral cortex.

[57]  Marcus Kaiser,et al.  Nonoptimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems , 2006, PLoS Comput. Biol..

[58]  J. Karbowski Global and regional brain metabolic scaling and its functional consequences , 2007, BMC biology.

[59]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Claus C. Hilgetag,et al.  Role of Mechanical Factors in the Morphology of the Primate Cerebral Cortex , 2006, PLoS Comput. Biol..

[61]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[62]  Isaac Meilijson,et al.  Gene Expression of Caenorhabditis elegans Neurons Carries Information on Their Synaptic Connectivity , 2006, PLoS Comput. Biol..

[63]  D. V. van Essen,et al.  Symmetry of Cortical Folding Abnormalities in Williams Syndrome Revealed by Surface-Based Analyses , 2006, The Journal of Neuroscience.

[64]  D. Chklovskii,et al.  Wiring optimization can relate neuronal structure and function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[66]  Yong-Yeol Ahn,et al.  Wiring cost in the organization of a biological neuronal network , 2005, q-bio/0505009.

[67]  Michael T. Gastner,et al.  The spatial structure of networks , 2006 .

[68]  M. Fricker,et al.  Biological solutions to transport network design , 2007, Proceedings of the Royal Society B: Biological Sciences.

[69]  C. Stam,et al.  Small-world networks and functional connectivity in Alzheimer's disease. , 2006, Cerebral cortex.

[70]  A. Pérez-Escudero,et al.  Optimally wired subnetwork determines neuroanatomy of Caenorhabditis elegans , 2007, Proceedings of the National Academy of Sciences.

[71]  John M Beggs,et al.  The criticality hypothesis: how local cortical networks might optimize information processing , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[72]  O. Sporns,et al.  Identification and Classification of Hubs in Brain Networks , 2007, PloS one.

[73]  Edward T. Bullmore,et al.  Efficiency and Cost of Economical Brain Functional Networks , 2007, PLoS Comput. Biol..

[74]  Leah Krubitzer,et al.  The Magnificent Compromise: Cortical Field Evolution in Mammals , 2007, Neuron.

[75]  Shan Yu,et al.  A Small World of Neuronal Synchrony , 2008, Cerebral cortex.

[76]  O. Sporns,et al.  Dynamical consequences of lesions in cortical networks , 2008, Human brain mapping.

[77]  D. Schacter,et al.  The Brain's Default Network , 2008, Annals of the New York Academy of Sciences.

[78]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[79]  Alan C. Evans,et al.  Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. , 2008, Cerebral cortex.

[80]  E. Bullmore,et al.  Hierarchical Organization of Human Cortical Networks in Health and Schizophrenia , 2008, The Journal of Neuroscience.

[81]  Alex S. Ferecskó,et al.  Local Potential Connectivity in Cat Primary Visual Cortex , 2008 .

[82]  Yong He,et al.  Disrupted small-world networks in schizophrenia. , 2008, Brain : a journal of neurology.

[83]  S. Laughlin,et al.  Energy limitation as a selective pressure on the evolution of sensory systems , 2008, Journal of Experimental Biology.

[84]  Bruno B. Averbeck,et al.  The Statistical Neuroanatomy of Frontal Networks in the Macaque , 2008, PLoS Comput. Biol..

[85]  Olaf Sporns,et al.  Symbiotic relationship between brain structure and dynamics , 2009, BMC Neuroscience.

[86]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[87]  Alan C. Evans,et al.  Structural Insights into Aberrant Topological Patterns of Large-Scale Cortical Networks in Alzheimer's Disease , 2008, The Journal of Neuroscience.

[88]  Danielle S Bassett,et al.  Cognitive fitness of cost-efficient brain functional networks , 2009, Proceedings of the National Academy of Sciences.

[89]  Edward T. Bullmore,et al.  Neuroinformatics Original Research Article , 2022 .

[90]  Keith A. Johnson,et al.  Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer's Disease , 2009, The Journal of Neuroscience.

[91]  Olaf Sporns,et al.  Modeling the Impact of Lesions in the Human Brain , 2009, PLoS Comput. Biol..

[92]  A. van Ooyen,et al.  A simple rule for axon outgrowth and synaptic competition generates realistic connection lengths and filling fractions. , 2009, Cerebral cortex.

[93]  Woodrow L. Shew,et al.  Neuronal Avalanches Imply Maximum Dynamic Range in Cortical Networks at Criticality , 2009, The Journal of Neuroscience.

[94]  P Riley,et al.  Dynamical reconnection and stability constraints on cortical network architecture. , 2009, Physical review letters.

[95]  Edward T. Bullmore,et al.  Age-related changes in modular organization of human brain functional networks , 2009, NeuroImage.

[96]  O Sporns,et al.  Predicting human resting-state functional connectivity from structural connectivity , 2009, Proceedings of the National Academy of Sciences.

[97]  C. Stam,et al.  Small‐world properties of nonlinear brain activity in schizophrenia , 2009, Human brain mapping.

[98]  K. Worsley,et al.  Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. , 2009, Brain : a journal of neurology.

[99]  R. Kahn,et al.  Efficiency of Functional Brain Networks and Intellectual Performance , 2009, The Journal of Neuroscience.

[100]  Changsong Zhou,et al.  Graph analysis of cortical networks reveals complex anatomical communication substrate. , 2009, Chaos.

[101]  Alan C. Evans,et al.  Uncovering Intrinsic Modular Organization of Spontaneous Brain Activity in Humans , 2009, PloS one.

[102]  Leslie G. Valiant,et al.  Evolvability , 2009, JACM.

[103]  Jonathan D. Power,et al.  Functional Brain Networks Develop from a “Local to Distributed” Organization , 2009, PLoS Comput. Biol..

[104]  D. Plenz,et al.  Spontaneous cortical activity in awake monkeys composed of neuronal avalanches , 2009, Proceedings of the National Academy of Sciences.

[105]  E. Bullmore,et al.  Human brain networks in health and disease , 2009, Current opinion in neurology.

[106]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[107]  Kaustubh Supekar,et al.  Development of Large-Scale Functional Brain Networks in Children , 2009, NeuroImage.

[108]  Edward T. Bullmore,et al.  Broadband Criticality of Human Brain Network Synchronization , 2009, PLoS Comput. Biol..

[109]  Jun Li,et al.  Brain Anatomical Network and Intelligence , 2009, NeuroImage.

[110]  D. Chialvo Emergent complex neural dynamics , 2010, 1010.2530.

[111]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[112]  M. Freire,et al.  The Histological Slides and Drawings of Cajal , 2009, Front. Neuroanat..

[113]  R. Kahn,et al.  Aberrant Frontal and Temporal Complex Network Structure in Schizophrenia: A Graph Theoretical Analysis , 2010, The Journal of Neuroscience.

[114]  O. Sporns Networks of the Brain , 2010 .

[115]  Edward T. Bullmore,et al.  Disrupted Modularity and Local Connectivity of Brain Functional Networks in Childhood-Onset Schizophrenia , 2010, Front. Syst. Neurosci..

[116]  Catie Chang,et al.  Time–frequency dynamics of resting-state brain connectivity measured with fMRI , 2010, NeuroImage.

[117]  Alexander Borst,et al.  One Rule to Grow Them All: A General Theory of Neuronal Branching and Its Practical Application , 2010, PLoS Comput. Biol..

[118]  Yong He,et al.  Diffusion Tensor Tractography Reveals Abnormal Topological Organization in Structural Cortical Networks in Alzheimer's Disease , 2010, The Journal of Neuroscience.

[119]  Edward T. Bullmore,et al.  Modular and Hierarchically Modular Organization of Brain Networks , 2010, Front. Neurosci..

[120]  J. Palva,et al.  Neuronal synchrony reveals working memory networks and predicts individual memory capacity , 2010, Proceedings of the National Academy of Sciences.

[121]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[122]  Alex Fornito,et al.  What can spontaneous fluctuations of the blood oxygenation-level-dependent signal tell us about psychiatric disorders? , 2010, Current opinion in psychiatry.

[123]  Andrei G. Vlassenko,et al.  Regional aerobic glycolysis in the human brain , 2010, Proceedings of the National Academy of Sciences.

[124]  E. Bullmore,et al.  Behavioral / Systems / Cognitive Functional Connectivity and Brain Networks in Schizophrenia , 2010 .

[125]  J. Kaas,et al.  Connectivity-driven white matter scaling and folding in primate cerebral cortex , 2010, Proceedings of the National Academy of Sciences.

[126]  Simon W. Moore,et al.  Efficient Physical Embedding of Topologically Complex Information Processing Networks in Brains and Computer Circuits , 2010, PLoS Comput. Biol..

[127]  Marc Barthelemy,et al.  Spatial Networks , 2010, Encyclopedia of Social Network Analysis and Mining.

[128]  Marcus Kaiser,et al.  Hierarchy and Dynamics of Neural Networks , 2010, Front. Neuroinform..

[129]  O. Sporns,et al.  White matter maturation reshapes structural connectivity in the late developing human brain , 2010, Proceedings of the National Academy of Sciences.

[130]  Yuan Zhou,et al.  Abnormal Cortical Networks in Mild Cognitive Impairment and Alzheimer's Disease , 2010, PLoS Comput. Biol..

[131]  Gorka Zamora-López,et al.  Cortical Hubs Form a Module for Multisensory Integration on Top of the Hierarchy of Cortical Networks , 2009, Front. Neuroinform..

[132]  K. Strelnikov Neuroimaging and neuroenergetics: Brain activations as information-driven reorganization of energy flows , 2010, Brain and Cognition.

[133]  P A Robinson,et al.  Geometric effects on complex network structure in the cortex. , 2011, Physical review letters.

[134]  Danielle S Bassett,et al.  Genetic Influences on Cost-Efficient Organization of Human Cortical Functional Networks , 2011, The Journal of Neuroscience.

[135]  A. Barabasi,et al.  Interactome Networks and Human Disease , 2011, Cell.

[136]  Fred Gould,et al.  Gene-drive into insect populations with age and spatial structure: a theoretical assessment , 2010, Evolutionary applications.

[137]  R. Solé,et al.  Convergent Evolutionary Paths in Biological and Technological Networks , 2011, Evolution: Education and Outreach.

[138]  Manfred G Kitzbichler,et al.  Cognitive Effort Drives Workspace Configuration of Human Brain Functional Networks , 2011, The Journal of Neuroscience.

[139]  Olaf Sporns,et al.  Neurobiologically Realistic Determinants of Self-Organized Criticality in Networks of Spiking Neurons , 2011, PLoS Comput. Biol..

[140]  Mark W. Woolrich,et al.  Network modelling methods for FMRI , 2011, NeuroImage.

[141]  Scott T. Grafton,et al.  Dynamic reconfiguration of human brain networks during learning , 2010, Proceedings of the National Academy of Sciences.

[142]  Karl J. Friston,et al.  Free Energy and Dendritic Self-Organization , 2011, Front. Syst. Neurosci..

[143]  Nikola T. Markov,et al.  Weight Consistency Specifies Regularities of Macaque Cortical Networks , 2010, Cerebral cortex.

[144]  Ian A. Meinertzhagen,et al.  Wiring Economy and Volume Exclusion Determine Neuronal Placement in the Drosophila Brain , 2011, Current Biology.

[145]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[146]  O. Sporns,et al.  Rich-Club Organization of the Human Connectome , 2011, The Journal of Neuroscience.

[147]  E. Bullmore,et al.  Disrupted Axonal Fiber Connectivity in Schizophrenia , 2011, Biological Psychiatry.

[148]  Philip K. McGuire,et al.  Characterization of the anterior cingulate's role in the at-risk mental state using graph theory , 2011, NeuroImage.

[149]  J. Kurths,et al.  Exploring Brain Function from Anatomical Connectivity , 2011, Front. Neurosci..

[150]  Danielle S Bassett,et al.  Brain graphs: graphical models of the human brain connectome. , 2011, Annual review of clinical psychology.

[151]  Yong He,et al.  Age-related alterations in the modular organization of structural cortical network by using cortical thickness from MRI , 2011, NeuroImage.

[152]  J. Changeux,et al.  Experimental and Theoretical Approaches to Conscious Processing , 2011, Neuron.

[153]  Leon French,et al.  Relationships between Gene Expression and Brain Wiring in the Adult Rodent Brain , 2011, PLoS Comput. Biol..

[154]  Duncan A. Robertson,et al.  Topological Isomorphisms of Human Brain and Financial Market Networks , 2011, Front. Syst. Neurosci..

[155]  Mariano Sigman,et al.  A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks , 2011, Proceedings of the National Academy of Sciences.

[156]  O. Sporns,et al.  Functional connectivity between anatomically unconnected areas is shaped by collective network-level effects in the macaque cortex. , 2012, Cerebral cortex.

[157]  Yury Shtyrov,et al.  Fast reconfiguration of high-frequency brain networks in response to surprising changes in auditory input. , 2012, Journal of neurophysiology.

[158]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[159]  J. Rapoport,et al.  Simple models of human brain functional networks , 2012, Proceedings of the National Academy of Sciences.

[160]  Alessandro Vespignani Modelling dynamical processes in complex socio-technical systems , 2011, Nature Physics.

[161]  Edward T. Bullmore,et al.  Schizophrenia, neuroimaging and connectomics , 2012, NeuroImage.

[162]  Lorena R. R. Gianotti,et al.  Functional brain network efficiency predicts intelligence , 2012, Human brain mapping.

[163]  J. Rapoport,et al.  The anatomical distance of functional connections predicts brain network topology in health and schizophrenia. , 2013, Cerebral cortex.

[164]  James F. Glazebrook Embodiment and the inner life: Cognition and consciousness in the space of possible minds, M. Shanahan. Oxford University Press (2010) , 2014, Cogn. Syst. Res..