On the Riemannian metric of α-entropies of density matrices
暂无分享,去创建一个
[1] R. Balian,et al. Dissipation in many-body systems: A geometric approach based on information theory , 1986 .
[2] E. Lieb. Convex trace functions and the Wigner-Yanase-Dyson conjecture , 1973 .
[3] A. Uhlmann. The Metric of Bures and the Geometric Phase. , 1992 .
[4] Horace P. Yuen,et al. Multiple-parameter quantum estimation and measurement of nonselfadjoint observables , 1973, IEEE Trans. Inf. Theory.
[5] E. Wigner,et al. INFORMATION CONTENTS OF DISTRIBUTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.
[6] D. Petz. Monotone metrics on matrix spaces , 1996 .
[7] J. Dittmann. On the Riemannian metric on the space of density matrices , 1995 .
[8] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[9] A. Uhlmann. Density operators as an arena for differential geometry , 1993 .
[10] H. Hasegawa. Non-Commutative Extension of the Information Geometry , 1995 .
[11] H. Hasegawa. α-Divergence of the non-commutative information geometry , 1993 .
[12] D. Petz,et al. Quantum Entropy and Its Use , 1993 .
[13] D. Petz. Geometry of canonical correlation on the state space of a quantum system , 1994 .
[14] Dénes Petz,et al. The Bogoliubov inner product in quantum statistics , 1993 .