CFD-Based Twist Optimization of Hovering Rotors

Aerodynamic shape optimization of a helicopter rotor in hover is presented, using compressible CFD as the aerodynamic model. An efficient domain element shape parameterization method is presented which overcomes both the geometry control and volume mesh deformation problems simultaneously. Radial basis function global interpolation is used to provide direct transfer of domain element movements into deformations of the design surface and the CFD volume mesh, which is deformed in a high-quality fashion, and the parameterization method requires very few design variables to allow free-form design. This method is independent of mesh type (structured or unstructured) or size, and optimization independence from the flow solver is achieved by obtaining sensitivity information for an advanced parallel gradient-based algorithm by finite-difference. This has resulted in a flexible and versatile modular method of ’wrap-around’ optimization. Previous fixed-wing results have shown that a large proportion of the design space is accessible with the parameterization method and heavily constrained drag optimization has shown that significant improvements over existing designs can be achieved. In the present work, the method is extended to a rotor blade, and this is optimized for minimum torque in hovering flight with rigid constraints on thrust, internal volume and pitching moments. Twist optimization results are presented for three tip Mach numbers, and the effects of different parameterization levels analysed, using various combinations of two levels; global and local. Torque reductions of over 12% are shown for a fully subsonic case, and over 24% for a transonic case, using only three global and 15 local twist parameters.

[1]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[2]  Christian B Allen,et al.  Parallel efficient mesh motion using radial basis functions with application to multi‐bladed rotors , 2008 .

[3]  Antony Jameson,et al.  CFD for Aerodynamic Design and Optimization: Its Evolution over the Last Three Decades , 2003 .

[4]  Christian B Allen,et al.  Multigrid convergence of inviscid fixed‐ and rotary‐wing flows , 2002 .

[5]  Steve L. Karman,et al.  Geometry Parameterization Method for Multidisciplinary Applications , 2009 .

[6]  Juan J. Alonso,et al.  Mutiobjective Optimization Using Approximation Model-Based Genetic Algorithms , 2004 .

[7]  A. Jameson,et al.  Aerodynamic Shape Optimization of Complex Aircraft Configurations via an Adjoint Formulation , 1996 .

[8]  Christian B Allen,et al.  Aerodynamic Optimisation of Hovering Helicopter Rotors using Efficient and Flexible Shape Parameterisation , 2008 .

[9]  Christian B Allen,et al.  Parallel universal approach to mesh motion and application to rotors in forward flight , 2007 .

[10]  A. Le Pape,et al.  Numerical optimization of helicopter rotor aerodynamic performance in hover , 2005 .

[11]  Juan J. Alonso,et al.  Fully-implicit time-marching aeroelastic solutions , 1994 .

[12]  A. Tits,et al.  User's Guide for FSQP Version 2.0 A Fortran Code for Solving Optimization Problems, Possibly Minimax, with General Inequality Constraints and Linear Equality Constraints, Generating Feasible Iterates , 1990 .

[13]  Christian B Allen,et al.  Towards automatic structured multiblock mesh generation using improved transfinite interpolation , 2008 .

[14]  Christian B Allen,et al.  CFD‐based optimization of aerofoils using radial basis functions for domain element parameterization and mesh deformation , 2008 .

[15]  V. Braibant,et al.  Shape optimal design using B-splines , 1984 .

[16]  André L. Tits,et al.  On combining feasibility, descent and superlinear convergence in inequality constrained optimization , 1993, Math. Program..

[17]  R. M. Hicks,et al.  Wing Design by Numerical Optimization , 1977 .

[18]  Siva Nadarajah,et al.  Adjoint-Based Aerodynamic Shape Optimization of Rotorcraft Blades , 2008 .

[19]  Christian B Allen,et al.  Parallel simulation of unsteady hovering rotor wakes , 2006 .

[20]  Perry A. Newman,et al.  Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) for a 3-D Flexible Wing , 2001 .

[21]  B. Kulfan A Universal Parametric Geometry Representation Method - "CST" , 2007 .

[22]  F. X. Caradonna,et al.  Experimental and Analytical Studies of a Model Helicopter Rotor in Hover , 1980 .

[23]  Ken Badcock,et al.  A common European Euler code for the analysis of the helicopter rotor flowfield , 2000 .

[24]  Jamshid A. Samareh,et al.  Status and Future of Geometry Modeling and Grid Generation for Design and Optimization , 1999 .

[25]  A. Tits,et al.  Nonmonotone line search for minimax problems , 1993 .

[26]  Malcolm I. G. Bloor,et al.  Efficient parametrization of generic aircraft geometry , 1995 .

[27]  E. Robert,et al.  Rapid Airplane Parametric Input Design (RAPID) , 1995 .

[28]  Patrice Castonguay,et al.  SURVEY OF SHAPE PARAMETERIZATION TECHNIQUES AND ITS EFFECT ON THREE-DIMENSIONAL AERODYNAMIC SHAPE OPTIMIZATION , 2007 .

[29]  Patrice Castonguay,et al.  Effect of Shape Parameterization on Aerodynamic Shape Optimization , 2007 .

[30]  Ning Qin,et al.  AERODYNAMIC STUDIES FOR BLENDED WING BODY AIRCRAFT , 2002 .

[31]  A. Le Moigne,et al.  Parallel adjoint-based optimisation of a blended wing body aircraft with shock control bumps , 2007, The Aeronautical Journal (1968).

[32]  J. Samareh Survey of Shape Parameterization Techniques for High-Fidelity Multidisciplinary Shape Optimization , 2001 .

[33]  Christian B Allen,et al.  Unified Approach to CFD-CSD Interpolation and Mesh Motion using Radial Basis Functions , 2007 .

[34]  Roberto Celi,et al.  Recent Applications of Design Optimization to Rotorcraft-A Survey , 1999 .

[35]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[36]  John E. Bussoletti,et al.  "Fundamental" Parameteric Geometry Representations for Aircraft Component Shapes , 2006 .

[37]  Christian B Allen,et al.  Convergence of steady and unsteady formulations for inviscid hovering rotor solutions , 2003 .

[38]  C. Allen,et al.  Domain-Element Method for Aerodynamic Shape Optimization Applied to a Modern Transport Wing , 2009 .

[39]  Ijaz H. Parpia,et al.  van Leer flux vector splitting in moving coordinates , 1988 .

[40]  Antony Jameson,et al.  Multi-point Aero-Structural Optimization of Wings Including Planform Variations , 2007 .

[41]  Alan Watt,et al.  Advanced animation and rendering techniques , 1992 .

[42]  A. Jameson Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings , 1991 .

[43]  Christian B Allen,et al.  An unsteady multiblock multigrid scheme for lifting forward flight rotor simulation , 2004 .

[44]  Christian B Allen,et al.  Multidimensional Aircraft Data Interpolation using Radial Basis Functions , 2007 .

[45]  M. F. Rubinstein,et al.  Automated Structural Synthesis Using a Reduced Number of Design Coordinates , 1973 .

[46]  George S. Dulikravich,et al.  Aerodynamic shape design and optimization - Status and trends , 1992 .

[47]  Christian B. Allen,et al.  Efficient mesh motion using radial basis functions with data reduction algorithms , 2008, J. Comput. Phys..

[48]  C. Allen,et al.  Unified fluid–structure interpolation and mesh motion using radial basis functions , 2008 .