Use of molecular markers for entomological diversity assessment and their application in population study of aphids

L'utilisation de marqueurs moleculaires est l'un des outils les plus importants en developpement dans le domaine de la genetique des populations. Ces elements doivent etre pris en consideration avant de selectionner l'approche moleculaire la plus efficace aux questions et modeles cibles. Diverses approches en termes de marqueurs moleculaires sont decrites en relation avec l’etude des populations de pucerons : le bar-coding, les allozymes, le polymorphisme de longueurs de fragments de restriction (RFLP), le polymorphisme de longueur de fragment amplifie (AFLP), l’ADN polymorphe amplifie aleatoirement (RAPD), l’ADN microsatellite (SSR, STR), les repetitions de sequences inter-simples (ISSRs), le polymorphisme nucleotidique simple (SNP), l'ADN mitochondrial (ADNmt). La synthese des applications de ces methodes a l'etude de populations des pucerons est presentee ainsi que les principaux facteurs affectant la diversite genetique des pucerons. Cette demarche vise a fournir une base pour la selection des marqueurs moleculaires dans la genetique des populations aphidiennes. La connaissance approfondie des approches appliquees permettra l'etude de la diversite genetique de pucerons encore non/peu etudies pour investiguer les aspects evolutifs au sein de ces especes entomologiques.

[1]  P. Hebert,et al.  Mitochondrial DNA diversity in the pea aphid Acyrthosiphon pisum. , 1994, Genome.

[2]  P. Hebert,et al.  Patterns of genetic diversity in the sumac gall aphid, Melaphis rhois , 1991 .

[3]  C. Vorburger Temporal dynamics of genotypic diversity reveal strong clonal selection in the aphid Myzus persicae , 2006, Journal of evolutionary biology.

[4]  B. Wiegmann,et al.  Genetic Variation in the Myzus persicae Complex (Homoptera: Aphididae): Evidence for a Single Species , 2000 .

[5]  K. He,et al.  The genetic structure of Asian corn borer, Ostrinia furnacalis, populations in China: haplotype variance in northern populations and potential impact on management of resistance to transgenic maize. , 2014, The Journal of heredity.

[6]  R. Ford,et al.  Aphid transmission of maize dwarf mosaic virus strains. , 1976 .

[7]  A. Douglas,et al.  Low genetic diversity among pea aphid (Acyrthosiphon pisum) biotypes of different plant affiliation , 1999, Heredity.

[8]  M. Makni,et al.  Genetic structure of Aphis fabae Scopoli (Hemiptera, Aphididae) in Tunisia, inferred from RAPD markers. , 2013 .

[9]  C. Ramírez,et al.  Landscape composition modulates population genetic structure of Eriosoma lanigerum (Hausmann) on Malus domestica Borkh in central Chile. , 2009, Bulletin of entomological research.

[10]  J. Moult,et al.  Identification and analysis of deleterious human SNPs. , 2006, Journal of molecular biology.

[11]  D. Rand,et al.  Conditional hitchhiking of mitochondrial DNA: frequency shifts of Drosophila melanogaster mtDNA variants depend on nuclear genetic background. , 1995, Genetics.

[12]  R. Gardner,et al.  Genomic fingerprinting by microsatellite-primed PCR: a critical evaluation. , 1995, PCR methods and applications.

[13]  J. Gauthier,et al.  Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers , 2002, Molecular ecology.

[14]  A. Karley,et al.  The mid‐season crash in aphid populations: why and how does it occur? , 2004 .

[15]  A. Moya,et al.  Geographic distribution and seasonal variation of mitochondrial DNA haplotypes in the aphid Rhopalosiphum padi (Hemiptera: Aphididae) , 1997 .

[16]  R. Blackman,et al.  Catalog of the phylloxerids of the world (Hemiptera, Phylloxeridae) , 2016, ZooKeys.

[17]  H. Niemeyer,et al.  Genetic structure and clonal diversity of an introduced pest in Chile, the cereal aphid Sitobion avenae , 2005, Heredity.

[18]  E. Ostrander,et al.  SNPs in ecological and conservation studies: a test in the Scandinavian wolf population , 2005, Molecular ecology.

[19]  J. Razmjou,et al.  Climate effects on life cycle variation and population genetic architecture of the black bean aphid, Aphis fabae , 2011, Molecular ecology.

[20]  A. Cruaud,et al.  DNA Barcoding and the Associated PhylAphidB@se Website for the Identification of European Aphids (Insecta: Hemiptera: Aphididae) , 2014, PloS one.

[21]  Hui Chen,et al.  Differential Performance of Sitobion avenae Populations from Both Sides of the Qinling Mountains Under Common Garden Conditions , 2013, Environmental entomology.

[22]  B. Ortiz-Rivas,et al.  Combination of molecular data support the existence of three main lineages in the phylogeny of aphids (Hemiptera: Aphididae) and the basal position of the subfamily Lachninae. , 2010, Molecular phylogenetics and evolution.

[23]  J. Neigel,et al.  Intraspecific Phylogeography: The Mitochondrial DNA Bridge Between Population Genetics and Systematics , 1987 .

[24]  Robert J Toonen,et al.  Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. , 2006, Ecology letters.

[25]  F. Balloux,et al.  The estimation of population differentiation with microsatellite markers , 2002, Molecular ecology.

[26]  P. Sunnucks,et al.  Migration and genetic structure of the grain aphid (Sitobion avenae) in Britain related to climate and clonal fluctuation as revealed using microsatellites , 2002, Molecular ecology.

[27]  P. Hebert,et al.  bold: The Barcode of Life Data System (http://www.barcodinglife.org) , 2007, Molecular ecology notes.

[28]  N. Desneux,et al.  Genetic Diversity of Sitobion avenae (Homoptera: Aphididae) Populations from Different Geographic Regions in China , 2014, PloS one.

[29]  C. Carillo,et al.  LACK OF CLONAL VARIATION AMONG CANADIAN POPULATIONS OF THE CORN LEAF APHID, RHOPALOSIPHUM MAIDIS FITCH (HOMOPTERA: APHIDIDAE) , 1995, The Canadian Entomologist.

[30]  J. Anstead,et al.  Mitochondrial DNA sequence divergence among Schizaphis graminum (Hemiptera: Aphididae) clones from cultivated and non-cultivated hosts: haplotype and host associations , 2002, Bulletin of Entomological Research.

[31]  D. Botstein,et al.  Construction of a genetic linkage map in man using restriction fragment length polymorphisms. , 1980, American journal of human genetics.

[32]  R. Asokan,et al.  Development of Species-Specific Markers and Molecular Differences in Mitochondrial and Nuclear Dna Sequences of Aphis Gossypii and Myzus Persicae (Hemiptera: Aphididae) , 2012 .

[33]  A. Hermoso,et al.  Assessing the nucleotide diversity of three aphid species by RAPD , 1997 .

[34]  A. Domínguez,et al.  An evaluation of RAPD fragment reproducibility and nature , 1998, Molecular ecology.

[35]  Karina L Silva-Brandão,et al.  Barcoding lepidoptera: current situation and perspectives on the usefulness of a contentious technique. , 2009, Neotropical entomology.

[36]  K. Pringle,et al.  Genetic diversity of woolly apple aphid Eriosoma lanigerum (Hemiptera: Aphididae) populations in the Western Cape, South Africa , 2005, Bulletin of Entomological Research.

[37]  D. Martínez-Torres,et al.  Two mitochondrial haplotypes in Pterochloroides persicae (Hemiptera: Aphididae: Lachninae) associated with different feeding sites , 2013, Insect science.

[38]  D. Labuda,et al.  Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. , 1994, Genomics.

[39]  Youming Hou,et al.  Analysis of the population genetic structure of Rhynchophorus ferrugineus in Fujian, China, revealed by microsatellite loci and mitochondrial COI sequences , 2015 .

[40]  P. Hebert,et al.  DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. , 2007, Trends in genetics : TIG.

[41]  P. Batterham,et al.  Molecular markers to discriminate among four pest species of Helicoverpa (Lepidoptera: Noctuidae) , 2008, Bulletin of Entomological Research.

[42]  A. Michel,et al.  Population Genetic Structure of Aphis glycines , 2009, Environmental entomology.

[43]  S. Fuller,et al.  Russian wheat aphids (Diuraphis noxia) in China: native range expansion or recent introduction? , 2012, Molecular ecology.

[44]  W. Steiner,et al.  Genetic Differentiation and Its Bearing on Migration in North American Populations of the Corn Leaf Aphid, Rhopalosiphum maidis (Fitch) (Homoptera: Aphididae) , 1985 .

[45]  K. Wu,et al.  Detection of microsatellite polymorphisms without cloning. , 1994, Nucleic acids research.

[46]  M. Makni,et al.  Structure of the Black Bean Aphid Aphis fabae (Hemiptera: Aphididae) Complex, Inferred from DNA Barcoding , 2015 .

[47]  M. Krystal,et al.  A member of a new repeated sequence family which is conserved throughout eucaryotic evolution is found between the human δ and β globin genes , 1981 .

[48]  R. Giordano,et al.  Molecular and morphological differentiation between Aphis gossypii Glover (Hemiptera, Aphididae) and related species, with particular reference to the North American Midwest , 2014, ZooKeys.

[49]  L. Vieira,et al.  Temporal genotypic diversity of Schizaphis graminum (Rondani 1852) (Hemiptera: Aphididae) in a black oats (Avena strigosa) field , 2010 .

[50]  X. Qiao,et al.  Life cycle and population genetics of bird cherry-oat aphids Rhopalosiphum padi in China: an important pest on wheat crops , 2016, Journal of Pest Science.

[51]  Y. Zhong,et al.  Genetic Variation and Population Structure of Oriental Migratory Locust, Locusta migratoria manilensis, in China by Allozyme, SSRP-PCR, and AFLP Markers , 2006, Biochemical Genetics.

[52]  R. Giordano,et al.  Aphis (Hemiptera: Aphididae) species groups found in the Midwestern United States and their contribution to the phylogenetic knowledge of the genus , 2014, Insect science.

[53]  L. Mieuzet,et al.  Spatial and temporal genetic variability in French populations of the peach–potato aphid, Myzus persicae , 2003, Heredity.

[54]  S. Foster,et al.  Micro‐evolutionary change in relation to insecticide resistance in the peach–potato aphid, Myzus persicae , 2010 .

[55]  S. Fuller,et al.  A multi‐genome analysis approach enables tracking of the invasion of a single Russian wheat aphid (Diuraphis noxia) clone throughout the New World , 2014, Molecular ecology.

[56]  I. Godwin,et al.  Application of inter simple sequence repeat (ISSR) markers to plant genetics , 1997, Electrophoresis.

[57]  A. Latorre,et al.  Molecular markers linked to breeding system differences in segregating and natural populations of the cereal aphid Rhopalosiphum padi L. , 1999, Molecular ecology.

[58]  S. Bulman,et al.  Rhopalosiphum aphids in New Zealand. II. DNA sequences reveal two incompletely described species , 2005 .

[59]  Dhia Bouktila,et al.  Biotype characterization and genetic diversity of the greenbug, Schizaphis graminum (Hemiptera: Aphididae), in north Tunisia , 2012, Revista Colombiana de Entomología.

[60]  J. Peccoud,et al.  Evolutionary history of aphid-plant associations and their role in aphid diversification. , 2010, Comptes rendus biologies.

[61]  P. Hebert,et al.  Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[62]  N. Maclean,et al.  Spatial and temporal genetic variation in British field populations of the grain aphid Sitobion avenae (F.) (Hemiptera: Aphididae) studied using rapd-pcr , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[63]  S. Ekesi,et al.  Identification of aphid (Hemiptera: Aphididae) species of economic importance in Kenya using DNA barcodes and PCR-RFLP-based approach. , 2016, Bulletin of entomological research.

[64]  Jeremy R. deWaard,et al.  Biological identifications through DNA barcodes , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[65]  J. Ortiz,et al.  Inter-simple sequence repeats PCR for characterization of closely related grapevine germplasm , 1998, Euphytica.

[66]  G. Remaudiére,et al.  Catalogue of the world's Aphididae: Homoptera Aphidoidea. , 1997 .

[67]  P. Sunnucks,et al.  Genetic structure of an aphid studied using microsatellites: cyclic parthenogenesis, differentiated lineages and host specialization , 1997, Molecular ecology.

[68]  A. Forneck,et al.  Reproductive mode of grape phylloxera (Daktulosphaira vitifoliae, Homoptera: Phylloxeridae) in Europe: molecular evidence for predominantly asexual populations and a lack of gene flow between them. , 2006, Genome.

[69]  J. Fewell,et al.  Genetic diversity promotes homeostasis in insect colonies. , 2007, Trends in ecology & evolution.

[70]  T. Terachi The progress of DNA analyzing techniques and its impact on plant molecular systematics , 1993, Journal of Plant Research.

[71]  F. Vanlerberghe‐masutti,et al.  Host‐based genetic differentiation in the aphid Aphis gossypii Glover, evidenced from RAPD fingerprints , 1998 .

[72]  P. Sharp,et al.  Physical mapping of temperature-sensitive mutations of adenoviruses. , 1975, Journal of molecular biology.

[73]  M. Makni,et al.  Genetic Diversity of Potato Aphid, Macrosiphum euphorbiae, Populations in Tunisia Detected by RAPD , 2011 .

[74]  S. Via,et al.  Specialized Feeding Behavior Influences Both Ecological Specialization and Assortative Mating in Sympatric Host Races of Pea Aphids , 2000, The American Naturalist.

[75]  M. Kreitman,et al.  Is mitochondrial DNA a strictly neutral marker? , 1995, Trends in ecology & evolution.

[76]  D. Cheng,et al.  Genetic Variation Among the Geographic Population of the Grain Aphid, Sitobion avenae (Hemiptera: Aphididae) in China Inferred from Mitochondrial COI Gene Sequence , 2011 .

[77]  J. Avise Toward a Regional Conservation Genetics Perspective: Phylogeography of Faunas in the Southeastern United States , 1996 .

[78]  H. Manjunatha,et al.  Molecular Diversity of the Aphis gossypii (Hemiptera: Aphididae): A Potential Vector of Potyviruses (Potyviridae) , 2015 .

[79]  GEORGE I. BELL,et al.  Evolution of Simple Sequence Repeats , 1996, Comput. Chem..

[80]  P. Sunnucks,et al.  Evolutionary and genetic aspects of aphid biology: A review , 2013 .

[81]  F. Delmotte,et al.  Predominance of sexual reproduction in Romanian populations of the aphid Sitobion avenae inferred from phenotypic and genetic structure , 2003, Heredity.

[82]  A. Gilabert,et al.  Longitudinal clines in the frequency distribution of ‘super-clones’ in an aphid crop pest , 2015, Bulletin of Entomological Research.

[83]  R. Kieckhefer,et al.  Spring Movement of Cereal Aphids into South Dakota , 1974 .

[84]  SELECTIVE RESTRICTION FRAGMENT AMPLIFICATION: A GENERAL METHOD FOR DNA FINGERPRINTING , 2008 .

[85]  J. Peccoud,et al.  A continuum of genetic divergence from sympatric host races to species in the pea aphid complex , 2009, Proceedings of the National Academy of Sciences.

[86]  W. Black,et al.  Variation between biotype E clones of Schizaphis graminum (Homoptera: Aphididae) , 1992 .

[87]  A. Weeks,et al.  Patterns of Genetic Variation and Host Adaptation in an Invasive Population of Rhopalosiphum padi (Hemiptera: Aphididae) , 2010 .

[88]  P. Hebert,et al.  Genetic diversity and mode of reproduction in French populations of the aphid Rhopalosiphum padi L. , 1996, Heredity.

[89]  W. Black,et al.  Genetic variation and phylogenetic relationships among worldwide collections of the Russian wheat aphid, Diuraphis noxia (Mordvilko), inferred from allozyme and RAPD-PCR markers , 1993, Heredity.