Intermodulation mechanism and linearization of AlGaAs/GaAs HBTs

The intermodulation (IM) mechanism of heterojunction bipolar transistors (HBTs) has been studied by using an analytical nonlinear equivalent circuit model and Volterra-series analysis of the model. Although the third-order IM intercept point (IP3) does not depend on the emitter parameter, it is appreciably affected by base and collector parameters and has been substantially improved by utilizing punchthrough collector structure. The measured IP3 of punchthrough collector HBTs is 31 dBm with 150-mW dc power, which is higher than that of normal collector HBTs by 3 dB. The investigation of the cancellation effects of nonlinear elements reveals that the output nonlinear current components generated by emitter-base current source and base-collector current source cancel each other almost exactly, resulting in high linear characteristics of HBTs.

[1]  H. Morkoç,et al.  Doping effects and compositional grading in AlxGa1-xAs/GaAs heterojunction bipolar transistors , 1985, IEEE Transactions on Electron Devices.

[2]  H. Morkoc,et al.  An investigation of the effect of graded layers and tunneling on the performance of AlGaAs/GaAs heterojunction bipolar transistors , 1984, IEEE Transactions on Electron Devices.

[3]  S. A. Maas,et al.  Intermodulation in heterojunction bipolar transistors , 1991 .

[4]  Hao-Hsiung Lin,et al.  Super‐gain AlGaAs/GaAs heterojunction bipolar transistors using an emitter edge‐thinning design , 1985 .

[5]  Juin J. Liou,et al.  Forward-voltage capacitance of heterojunction space-charge regions , 1988 .

[6]  S. Narayanan,et al.  An analysis of distortion in bipolar transistors using integral charge control model and Volterra series , 1973 .

[7]  H. Casey,et al.  Heterostructure lasers , 1978 .

[8]  S. Narayanan Transistor distortion analysis using volterra series representation , 1967 .

[9]  P. K. Ikalainen,et al.  20 W linear, high efficiency internally matched HBT at 7.5 GHz , 1994, 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4).

[10]  John A. Higgins,et al.  AlGaAs/GaAs HBT linearity characteristics , 1994 .

[11]  Kevin W. Kobayashi,et al.  Ultra-low DC power GaAs HBT S-band low noise amplifiers , 1995, IEEE 1995 Microwave and Millimeter-Wave. Monolithic Circuits Symposium. Digest of Papers.

[12]  T. Yoshimasu,et al.  High-efficiency HBT MMIC linear power amplifier for L-band personal communications systems , 1994, IEEE Microwave and Guided Wave Letters.

[13]  Barry R. Allen,et al.  High-linearity, low DC power GaAs HBT broadband amplifiers to 11 GHz , 1989, 11th Annual Gallium Arsenide Integrated Circuit (GaAs IC) Symposium.

[14]  Dimitris Pavlidis,et al.  Mechanisms determining third order intermodulation distortion in AlGaAs/GaAs heterojunction bipolar transistors , 1992 .

[15]  B. R. Ryum,et al.  A Gummel-Poon model for abrupt and graded heterojunction bipolar transistors (HBTs) , 1990 .

[16]  A. Saleh Matrix analysis of mildly nonlinear, multiple-input, multiple-output systems with memory , 1982, The Bell System Technical Journal.

[17]  H. C. Poon,et al.  Implication of transistor frequency dependence on intermodulation distortion , 1974 .