1.3-/spl mu/m quantum-well InGaAsP, AlGaInAs, and InGaAsN laser material gain: a theoretical study

Due to the keen interest in improving the high-speed and high-temperature performance of 1.3-/spl mu/m wavelength lasers, we compare, for the first time, the material gain of three different competing active layer materials, namely InGaAsP-InGaAsP, AlGaInAs-AlGaInAs, and InGaAsN-GaAs. We present a theoretical study of the gain of each quantum-well material system and present the factors that influence the material gain performance of each system. We find that AlGaInAs and InGaAsN active layer materials have substantially better material gain performance than the commonly used InGaAsP, both at room temperature and at high temperature.

[1]  Chapter 2 – Strained Layer Quantum Well Lasers , 1999 .

[2]  Stephen J. Sweeney,et al.  Insights into carrier recombination processes in 1.3 [micro sign]m GaInNAs-based semiconductor lasers attained using high pressure , 2001 .

[3]  Wladek Walukiewicz,et al.  Band Anticrossing in GaInNAs Alloys , 1999 .

[4]  Takeshi Kitatani,et al.  GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance , 1996 .

[5]  Seoung-Hwan Park,et al.  Theory and experiment of In/sub 1-x/Ga/sub x/As/sub y/P/sub 1-y/ and In/sub 1-x-y/Ga/sub x/Al/sub y/As long-wavelength strained quantum-well lasers , 1999 .

[6]  Y. Noguchi,et al.  Design criteria of 1.3-μm multiple-quantum-well lasers for high-temperature operation , 2000, IEEE Photonics Technology Letters.

[7]  S. L. Chuang,et al.  High-speed modulation of long-wavelength In/sub 1-x/Ga/sub x/As/sub y/P/sub 1-y/ and In/sub 1-x-y/Ga/sub x/Al/sub y/As strained quantum-well lasers , 2001 .

[8]  Eli Yablonovitch,et al.  Band structure engineering of semiconductor lasers for optical communications , 1988 .

[9]  Influence of the valence-band offset on gain and absorption in GaNAs/GaAs quantum well lasers , 2000 .

[10]  Masahiro Asada,et al.  Chapter 2 – INTRABAND RELAXATION EFFECT ON OPTICAL SPECTRA , 1993 .

[11]  W. Harrison Elementary theory of heterojunctions , 1977 .

[12]  P. Bhattacharya,et al.  Auger recombination rates in compressively strained In/sub x/Ga/sub 1-x/As/InGaAsP/InP (0.53, 1993, IEEE Photonics Technology Letters.

[13]  Kam Y. Lau,et al.  Chapter 4 – ULTRALOW THRESHOLD QUANTUM WELL LASERS , 1993 .

[14]  T. Uchida,et al.  Well-thickness dependence of high-temperature characteristics in 1.3-μm AlGaInAs-InP strained-multiple-quantum-well lasers , 1998, IEEE Photonics Technology Letters.

[15]  R. Puchert,et al.  Modelling the temperature dependence of threshold current, external differential efficiency and lasing wavelength in QW laser diodes , 1995 .

[16]  S. Murata,et al.  Analysis of differential gain in InGaAs-InGaAsP compressive and tensile strained quantum-well lasers and its application for estimation of high-speed modulation limit , 1993 .

[17]  Stephen J. Sweeney,et al.  The temperature dependence of 1.3- and 1.5-/spl mu/m compressively strained InGaAs(P) MQW semiconductor lasers , 1999 .

[18]  Masayuki Ishikawa,et al.  High speed quantum-well lasers and carrier transport effects , 1992 .

[19]  Bin Zhao Chapter 1 – Quantum Well Semiconductor Lasers , 1999 .

[20]  John E. Bowers,et al.  Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained-layer quantum well , 1994 .

[21]  A. Yariv,et al.  Effect of state filling on the modulation response and the threshold current of quantum well lasers , 1992 .

[22]  Rajaram Bhat,et al.  Measurement of nonradiative Auger and radiative recombination rates in strained‐layer quantum‐well systems , 1993 .

[23]  Niloy K. Dutta,et al.  Quantum-Well Semiconductor Lasers , 1993 .

[24]  Hiromi Oohashi,et al.  Study on the dominant mechanisms for the temperature sensitivity of threshold current in 1.3-/spl mu/m InP-based strained-layer quantum-well lasers , 1996 .

[25]  F. Koyama,et al.  A novel GaInNAs-GaAs quantum-well structure for long-wavelength semiconductor lasers , 1997, IEEE Photonics Technology Letters.

[26]  Jen-Inn Chyi,et al.  Theoretical Study of the Temperature Dependence of 1.3-pm AlGaInAs-InP Multiple-Quantum-Well Lasers , 1996 .

[27]  T. Fujii,et al.  Observation of reduced nonradiative current in 1.3-μm AlGaInAs-InP strained MQW lasers , 1999, IEEE Photonics Technology Letters.

[28]  J. Schlafer,et al.  Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5 mu m compressively strained semiconductor lasers , 1993 .

[29]  Peter S. Zory,et al.  Quantum well lasers , 1993 .

[30]  Peter S. Zory,et al.  A model for GRIN-SCH-SQW diode lasers , 1988 .

[31]  W. Kohn,et al.  Motion of Electrons and Holes in Perturbed Periodic Fields , 1955 .

[32]  I. White,et al.  Influence of localized nitrogen states on material gain in InGaAsN/GaAs quantum-well lasers , 2001 .

[33]  Saulius Marcinkevicius,et al.  Hole distribution in InGaAsP 1.3-/spl mu/m multiple-quantum-well laser structures with different hole confinement energies , 1999 .

[34]  D. L. Coblentz,et al.  Temperature dependence of long wavelength semiconductor lasers , 1992 .

[35]  Eoin P. O'Reilly,et al.  Temperature sensitivity and high temperature operation of long wavelength semiconductor lasers , 1993 .

[36]  Martin D. Dawson,et al.  Electronic states and band alignment in GalnNAs/GaAs quantum-well structures with low nitrogen content , 2000 .

[37]  I. Suemune,et al.  Analysis of temperature dependent optical gain of strained quantum well taking account of carriers in the SCH layer , 1994, IEEE Photonics Technology Letters.

[38]  Jorg Hader,et al.  Gain in 1.3 μm materials: InGaNAs and InGaPAs semiconductor quantum-well lasers , 2000 .

[39]  Yia-Chung Chang,et al.  Valence‐band mixing effects on the gain and the refractive index change of quantum‐well lasers , 1988 .

[40]  L. J. Sham,et al.  Effective masses of holes at GaAs-AlGaAs heterojunctions. , 1985, Physical Review B (Condensed Matter).

[41]  Y. Yoshikuni,et al.  Theoretical analysis of pure effects of strain and quantum confinement on differential gain in InGaAsP/lnP strained-layer quantum-well lasers , 1994 .

[42]  J. Piprek,et al.  Self-consistent analysis of high-temperature effects on strained-layer multiquantum-well InGaAsP-InP lasers , 2000, IEEE Journal of Quantum Electronics.