Search for electron-antineutrinos associated with gravitational-wave events GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817 at Daya Bay

The establishment of a possible connection between neutrino emission and gravitational-wave (GW) bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge. In the Daya Bay experiment, using the data collected from December 2011 to August 2017, a search was performed for electron-antineutrino signals that coincided with detected GW events, including GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817. We used three time windows of ±10, ±500, and ±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates. The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows. Assuming monochromatic spectra, we found upper limits (90% confidence level) of the electron-antineutrino fluence of (1.13 − 2.44)×1011 cm−2 at 5 MeV to 8.0×107 cm−2 at 100 MeV for the three time windows. Under the assumption of a Fermi-Dirac spectrum, the upper limits were found to be (5.4 − 7.0)×109 cm−2 for the three time windows.

Y. F. Wang | Y. F. Wang | J. L. Liu | Y. X. Zhang | Y. Y. Zhang | Z. J. Zhang | Y. X. Chen | Z. Y. Zhang | J. Napolitano | Z. Zhang | Fan Zhang | J. H. Lee | N. Wang | R. Leitner | V. Vorobel | Z. Zhang | A. Balantekin | Y. Ding | S. Blyth | Y. Hsiung | H. Steiner | K. McDonald | H. Zhuang | M. Bishai | D. Naumov | J. Liu | A. Olshevskiy | J. Peng | A. Higuera | B. Viren | L. Wen | J. Zhang | J. Hu | J. Sun | M. Gonchar | K. Treskov | Z. Li | Huifen. Chen | Z. Zhang | J. Wang | H. Zhang | J. Cheng | C. Marshall | L. Littenberg | C. Tull | D. Dwyer | M. Chu | J. Ochoa-Ricoux | K. Heeger | R. Hackenburg | H. Gong | T. Xue | J. Chang | X. Li | F. An | Y. Chang | S. M. Chen | J. Cherwinka | J. Cummings | M. Diwan | G. Gong | W. Gu | X. H. Guo | S. Hans | M. He | Y. Hor | B. Hu | D. Jaffe | X. Ji | L. Kang | S. Kettell | M. Kramer | J. Leung | Q. Li | S. Lin | J. Ling | J. Link | B. Littlejohn | J. Liu | H. Lu | K. Luk | X. Ma | C. Pun | F. Qi | N. Raper | R. Rosero | B. Roskovec | M. Wang | R. Wang | W. Wang | K. Whisnant | C. White | H. Wong | E. Worcester | Q. Wu | D. Xia | J. Xu | C. Yang | Z. Yu | L. Zhan | Q. Zhang | J. Dove | Z. Guo | K. Jen | T. Langford | R. Lei | S. Li | Y. Li | J. Lu | E. Naumova | H. Pan | X. Zhang | Y. Zhang | Philipp Huber | D. Martinez Caicedo | T. Dohnal | T. Tměj | Z. Xie | B. Yue | Y. Chen | H. Yu | J. Chang | Y. Heng | T. Hu | X. Ji | M. Ye | C. Lu | Z. Wang | O. Dalager | Z. M. Wang | J. Guo | Y. Zeng | H. Liang | R. Johnson | H. Band | F. Deng | M. Dvořák | J. Gallo | D. Jones | Y. Meng | J. Park | J. Ren | X. Ruan | W. Tse | Y. Wang | Z. Xing | H. Wei | Y. Y. Zhang | Y. Yang | X. Qian | J. Zou | F. Wu | Z. Hu | L. Wei | J. Cao | X. Huang | G. Cao | R. Mckeown | Y. Wang | W. Li | Z. P. Zhang | S. Kohn | X. Q. Li | S. Li | M. Yeh | L. Yang | W. Wang | H. F. Yao | C. Zhang | L. Zhou | W. Wu | Y. Ma | S. Patton | L. Guo | M. Qi | X. Q. Li | J. Zhao | Y. Zhang | J. Lee | J. Lee | S. Zeng | Y. Guo | C. H. Wang | H. Huang | F. Li | C. J. Lin | G. Lin | D. Wu | Y. Huang | J. Li | Z. Wang | X. Ma | Y. Chen | Z. Wang | S. Li | X. Guo | Z. Cheng | H. Lu | C. Morales Reveco | X. Wang | T. Xu | B. Young | (Daya Bay Collaboration) | F. Li | S. Lin | S. Lin | F. Li | H. Yu | J. Hu | D. Wu | X. Y. Ma | X. L. Ji | X. P. Ji | J. H. C. Lee | S. C. Li | X. N. Li | J. C. Liu | X. B. Ma | X. Y. Ma | Y. M. Zhang

[1]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[2]  D. Guetta Multimessenger Probes of High-energy Sources , 2019, EPJ Web of Conferences.

[3]  Chang Wei Loh,et al.  Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay. , 2018, Physical review letters.

[4]  T. White,et al.  Tomboys Revisited: A Retrospective Comparison of Childhood Behavioral Patterns in Lesbians and Transmen , 2018, Journal of Child and Adolescent Psychiatry.

[5]  B. A. Boom,et al.  GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence , 2017, 1711.05578.

[6]  K. Kashiyama,et al.  Detectability of thermal neutrinos from binary neutron-star mergers and implications for neutrino physics , 2017, 1710.05922.

[7]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[8]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[9]  A. D. Ludovico,et al.  A Search for Low-energy Neutrinos Correlated with Gravitational Wave Events GW 150914, GW 151226, and GW 170104 with the Borexino Detector , 2017, 1706.10176.

[10]  Bing Zhang,et al.  Neutrino-dominated accretion flows as the central engine of gamma-ray bursts , 2017, 1705.05516.

[11]  G F Cao,et al.  Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay. , 2017, Physical review letters.

[12]  Chang Wei Loh,et al.  Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment , 2016, 1610.04802.

[13]  M. Hartz,et al.  SEARCH FOR NEUTRINOS IN SUPER-KAMIOKANDE ASSOCIATED WITH GRAVITATIONAL-WAVE EVENTS GW150914 AND GW151226 , 2016, Universe.

[14]  The Ligo Scientific Collaboration,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016, 1606.04855.

[15]  D Huet,et al.  GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. , 2016, Physical review letters.

[16]  Chang Wei Loh,et al.  New measurement of θ13 via neutron capture on hydrogen at Daya Bay , 2016, 1603.03549.

[17]  Y. Wang,et al.  High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube , 2016, 1602.05411.

[18]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[19]  Y. Wang,et al.  GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. , 2016, Physical review. D..

[20]  R. Surman,et al.  Black hole spin influence on accretion disk neutrino detection , 2015, 1510.06011.

[21]  B. R. Littlejohn,et al.  The Detector System of The Daya Bay Reactor Antineutrino Experiment , 2015, 1508.03943.

[22]  Zhe Wang,et al.  Design, characterization, and sensitivity of the supernova trigger system at Daya Bay , 2015, 1505.02501.

[23]  B. R. Littlejohn,et al.  Independent measurement of the neutrino mixing angle theta(13) via neutron capture on hydrogen at Daya Bay , 2014, 1406.6468.

[24]  zhe wang,et al.  A precise calculation of delayed coincidence selection efficiency and accidental coincidence rate , 2013, 1301.5085.

[25]  S. Márka,et al.  How gravitational-wave observations can shape the gamma-ray burst paradigm , 2012, 1212.2289.

[26]  G. J. Babu,et al.  The Astrophysical Multimessenger Observatory Network (AMON) , 2012, 1211.5602.

[27]  X. Qian,et al.  Improved Measurement of Electron Antineutrino Disappearance at Daya Bay (Proceeding to NuFact12) , 2012, 1210.6327.

[28]  B. R. Littlejohn,et al.  A side-by-side comparison of Daya Bay antineutrino detectors , 2012, 1202.6181.

[29]  R. Surman,et al.  NEUTRINO SPECTRA FROM ACCRETION DISKS: NEUTRINO GENERAL RELATIVISTIC EFFECTS AND THE CONSEQUENCES FOR NUCLEOSYNTHESIS , 2011, 1105.6371.

[30]  M. Shibata,et al.  Gravitational waves and neutrino emission from the merger of binary neutron stars. , 2011, Physical review letters.

[31]  S. Márka,et al.  Bounding the Time Delay between High-energy Neutrinos and Gravitational-wave Transients from Gamma-ray Bursts , 2011, 1101.4669.

[32]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[33]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[34]  R. Surman,et al.  Detecting neutrinos from black hole-neutron star mergers , 2009, 0910.1385.

[35]  J. Valle,et al.  Parameter degeneracy in flavor-dependent reconstruction of supernova neutrino fluxes , 2008, 0802.1489.

[36]  R. Surman,et al.  Supernova neutrinos: The accretion disk scenario , 2006, astro-ph/0605281.

[37]  F. Vissani,et al.  Precise quasielastic neutrino/nucleon cross-section , 2003, astro-ph/0302055.

[38]  S. Desai,et al.  Search for Neutrinos from Gamma-Ray Bursts Using Super-Kamiokande , 2002, astro-ph/0205304.

[39]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[40]  W. Hillebrandt,et al.  Neutrino emission from type II supernovae: an analysis of the spectra , 1989 .

[41]  M. Livio,et al.  Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.

[42]  Park,et al.  Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud. , 1987, Physical review letters.

[43]  Hirata,et al.  Observation of a neutrino burst from the supernova SN1987A. , 1987, Physical review letters.

[44]  Hanyu Wei Highlight on Supernova Early Warning at Daya Bay , 2015 .

[45]  王喆,et al.  A precise calculation of delayed coincidence selection efficiency and accidental coincidence rate , 2015 .