Topological interpretations of fuzzy subsets. A unified approach for fuzzy thresholding algorithms

We show that the classical definition of a fuzzy subset carries additional structures of a topological nature. We look at the concept of a fuzzy subset and its corresponding @a-cuts from an alternative point of view: namely, a fuzzy subset may be interpreted as a nested topology on a crisp set of reference, called a universe. Several kinds of fuzzy subsets associated to this interpretation are analyzed. Other topologies induced by fuzzy subsets are considered, paying special attention to their relationship with total preorders defined on the universe. Moreover, this theoretical approach allows us to provide a unified framework for most of the fuzzy thresholding algorithms that can be found in the literature.

[1]  L. Nachbin Topology and order , 1965 .

[2]  Jun Ye,et al.  Expected value method for intuitionistic trapezoidal fuzzy multicriteria decision-making problems , 2011, Expert Syst. Appl..

[3]  Juan Carlos Candeal,et al.  Preorderable topologies and order-representability of topological spaces , 2009 .

[4]  Humberto Bustince,et al.  Interval-valued fuzzy sets constructed from matrices: Application to edge detection , 2009, Fuzzy Sets Syst..

[5]  Juan Carlos Candeal,et al.  Continuous order representability properties of topological spaces and algebraic structures , 2012 .

[6]  Caroline M. Eastman,et al.  Response: Introduction to fuzzy arithmetic: Theory and applications : Arnold Kaufmann and Madan M. Gupta, Van Nostrand Reinhold, New York, 1985 , 1987, Int. J. Approx. Reason..

[7]  Gianni Bosi,et al.  Continuous representability of homothetic preorders by means of sublinear order-preserving functions , 2003, Math. Soc. Sci..

[8]  Humberto Bustince,et al.  Construction of Interval-Valued Fuzzy Relations With Application to the Generation of Fuzzy Edge Images , 2011, IEEE Transactions on Fuzzy Systems.

[9]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[10]  A. Beardon,et al.  Lexicographic decomposition of chains and the concept of a planar chain , 2002 .

[11]  D. C. J. Burgess,et al.  On separation axioms for certain types of ordered topological space , 1977, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  R. Bellman,et al.  Abstraction and pattern classification , 1996 .

[13]  S. Purisch,et al.  The orderability and suborderability of metrizable spaces , 1977 .

[14]  Qinghua Zheng,et al.  Topological analysis of knowledge maps , 2012, Knowl. Based Syst..

[15]  Hamid R. Tizhoosh,et al.  Image thresholding using type II fuzzy sets , 2005, Pattern Recognit..

[16]  William Zhu,et al.  Generalized rough sets based on relations , 2007, Inf. Sci..

[17]  Muhammad Irfan Ali,et al.  Another approach to soft rough sets , 2013, Knowl. Based Syst..

[18]  Witold Pedrycz,et al.  Shadowed sets: representing and processing fuzzy sets , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[19]  J. Goguen L-fuzzy sets , 1967 .

[20]  Francisco Herrera,et al.  A genetic tuning to improve the performance of Fuzzy Rule-Based Classification Systems with Interval-Valued Fuzzy Sets: Degree of ignorance and lateral position , 2011, Int. J. Approx. Reason..

[21]  G. Bosi,et al.  Continuous Utility Functions Through Scales , 2008 .

[22]  Rudolf F. Albrecht,et al.  Topological interpretation of fuzzy sets and intervals , 2003, Fuzzy Sets Syst..

[23]  Madan M. Gupta,et al.  Introduction to Fuzzy Arithmetic , 1991 .

[24]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[25]  Zhiming Zhang,et al.  On interval type-2 rough fuzzy sets , 2012, Knowl. Based Syst..

[26]  J. C. Candeal,et al.  SEMICONTINUOUS ORDER-REPRESENTABILITY OF TOPOLOGICAL SPACES , 2009 .

[27]  JUAN CARLOS CANDEAL,et al.  Universal codomains to Represent Interval Orders , 2009, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[28]  Juan Carlos Candeal,et al.  Representability of binary relations through fuzzy numbers , 2006, Fuzzy Sets Syst..

[29]  A. Kaufmann,et al.  Introduction to fuzzy arithmetic : theory and applications , 1986 .

[30]  G. Herden On the existence of utility functions ii , 1989 .

[31]  Humberto Bustince,et al.  Image thresholding using restricted equivalence functions and maximizing the measures of similarity , 2007, Fuzzy Sets Syst..

[32]  Mao-Jiun J. Wang,et al.  Image thresholding by minimizing the measures of fuzzines , 1995, Pattern Recognit..

[33]  Vicki Knoblauch Continuous lexicographic preferences , 2005 .

[34]  Edurne Barrenechea Tartas,et al.  Extensions of fuzzy sets in image processing: an overview , 2011 .

[35]  Zeshui Xu,et al.  Some geometric aggregation operators based on intuitionistic fuzzy sets , 2006, Int. J. Gen. Syst..

[36]  Gerhard Herden,et al.  Useful topologies and separable systems , 2000 .

[37]  G. Debreu Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .

[38]  Young Bae Jun,et al.  Soft sets and soft rough sets , 2011, Inf. Sci..

[39]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[40]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[41]  Juan Carlos Candeal,et al.  Numerical isotonies of preordered semigroups through the concept of a scale. , 2005 .

[42]  Juan Carlos Candeal,et al.  Order representability in groups and vector spaces , 2012 .

[43]  M. Stone,et al.  Boundedness Properties in Function-Lattices , 1949, Canadian Journal of Mathematics.

[44]  Hayit Greenspan,et al.  An Adaptive Mean-Shift Framework for MRI Brain Segmentation , 2009, IEEE Transactions on Medical Imaging.

[45]  Humberto Bustince,et al.  Aggregation for Atanassov’s Intuitionistic and Interval Valued Fuzzy Sets: The Median Operator , 2012, IEEE Transactions on Fuzzy Systems.

[46]  P. Urysohn Über die Mächtigkeit der zusammenhängenden Mengen , 1925 .

[47]  Humberto Bustince,et al.  Relationship between restricted dissimilarity functions, restricted equivalence functions and normal EN-functions: Image thresholding invariant , 2008, Pattern Recognit. Lett..

[48]  Esteban Induráin,et al.  Unified Representability of Total Preorders and Interval Orders through a Single Function: The Lattice Approach , 2009, Order.

[49]  Colin Studholme,et al.  A non-local fuzzy segmentation method: Application to brain MRI , 2011, Pattern Recognit..

[50]  Humberto Bustince,et al.  Image segmentation using Atanassov's intuitionistic fuzzy sets , 2013, Expert systems with applications.

[51]  Juan Carlos Candeal,et al.  Lexicographic behaviour of chains , 1999 .

[52]  Francisco Herrera,et al.  Improving the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets and genetic amplitude tuning , 2010, Inf. Sci..

[53]  G. Debreu Mathematical Economics: Continuity properties of Paretian utility , 1964 .

[54]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[55]  Gianni Bosi,et al.  On the structure of completely useful topologies , 2002 .

[56]  Juan Carlos Candeal,et al.  Isotonies on ordered cones through the concept of a decreasing scale , 2007, Math. Soc. Sci..

[57]  Humberto Bustince,et al.  A class of fuzzy multisets with a fixed number of memberships , 2012, Inf. Sci..

[58]  Witold Pedrycz,et al.  Some general comments on fuzzy sets of type-2 , 2009 .

[59]  A. Beardon,et al.  The non-existence of a utility function and the structure of non-representable preference relations , 2002 .

[60]  Vicki Knoblauch,et al.  Lexicographic orders and preference representation , 2000 .

[61]  María Jesús Campión Arrastia,et al.  Semicontinuous order-representability of topological spaces , 2009 .