High throughput computational screening for 2D ferromagnetic materials: the critical role of anisotropy and local correlations

The recent observation of ferromagnetic order in two-dimensional (2D) materials has initiated a booming interest in the subject of 2D magnetism. In contrast to bulk materials, 2D materials can only exhibit magnetic order in the presence of magnetic anisotropy. In the present work we have used the Computational 2D Materials Database (C2DB) to search for new ferromagnetic 2D materials using the spinwave gap as a simple descriptor that accounts for the role of magnetic anisotropy. In addition to known compounds we find 12 novel insulating materials that exhibit magnetic order at finite temperatures. For these we evaluate the critical temperatures from classical Monte Carlo simulations of a Heisenberg model with exchange and anisotropy parameters obtained from first principles. Starting from 150 stable ferromagnetic 2D materials we find five candidates that are predicted to have critical temperatures exceeding that of CrI3. We also study the effect of Hubbard corrections in the framework of DFT+U and find that the value of U can have a crucial influence on the prediction of magnetic properties. Our work provides new insight into 2D magnetism and identifies a new set of promising monolayers for experimental investigation.

[1]  S. Bramwell,et al.  Magnetization: A characteristic of the Kosterlitz-Thouless-Berezinskii transition. , 1994, Physical review. B, Condensed matter.

[2]  Wang Yao,et al.  Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2 , 2018, Nature Materials.

[3]  Raja Das,et al.  Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates , 2018, Nature Nanotechnology.

[4]  M. Samsel-Czekała,et al.  Strain effects on electronic structures of monolayer iron sulphide and selenide , 2018 .

[5]  Jie Shan,et al.  Electric-field switching of two-dimensional van der Waals magnets , 2018, Nature Materials.

[6]  D. Mandrus,et al.  Magnetism in two-dimensional van der Waals materials , 2018, Nature.

[7]  Muratahan Aykol,et al.  The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .

[8]  K. Jacobsen,et al.  The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals , 2018, 2D Materials.

[9]  Wei Huang,et al.  Single-layer metal halides MX2 (X = Cl, Br, I): stability and tunable magnetism from first principles and Monte Carlo simulations , 2017 .

[10]  Laurent Bellaiche,et al.  Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers , 2018, npj Computational Materials.

[11]  E. Aktürk,et al.  Electronic and magnetic properties of monolayer α-RuCl3: a first-principles and Monte Carlo study. , 2018, Physical chemistry chemical physics : PCCP.

[12]  Bin Xu,et al.  2D Intrinsic Ferromagnets from van der Waals Antiferromagnets. , 2018, Journal of the American Chemical Society.

[13]  K. Thygesen,et al.  Discovering two-dimensional topological insulators from high-throughput computations , 2018, Physical Review Materials.

[14]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[16]  Xiaodong Xu,et al.  Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics , 2017, Science Advances.

[17]  M. McGuire Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides , 2017, 1704.08225.

[18]  Xiang Zhang,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[19]  Thomas H. Bointon,et al.  Approaching magnetic ordering in graphene materials by FeCl3 intercalation. , 2014, Nano letters.

[20]  E. Aktürk,et al.  Exploring the electronic and magnetic properties of new metal halides from bulk to two-dimensional monolayer: RuX3 (X = Br, I) , 2018, Journal of Magnetism and Magnetic Materials.

[21]  S. Haigh,et al.  Hall micromagnetometry of individual two-dimensional ferromagnets , 2019 .

[22]  M. K. Wilkinson,et al.  Neutron Diffraction Study of the Magnetic Properties of Mn Br 2 , 1958 .

[23]  Xiang Zhang,et al.  Two-dimensional magnetic crystals and emergent heterostructure devices , 2019, Science.

[24]  T. Olsen Assessing the performance of the random phase approximation for exchange and superexchange coupling constants in magnetic crystalline solids , 2017, 1707.08362.

[25]  Haiping Wu,et al.  Quantum anomalous Hall effect in ferromagnetic transition metal halides , 2016, 1609.08115.

[26]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[27]  Mamoru Watanabe,et al.  Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. , 2003, Journal of the American Chemical Society.

[28]  G. Gao,et al.  Robust half-metallicities and perfect spin transport properties in 2D transition metal dichlorides , 2018 .

[29]  Michael A. McGuire,et al.  Electrical control of 2D magnetism in bilayer CrI3 , 2018, Nature Nanotechnology.

[30]  Subash Adhikari,et al.  Ferromagnetism in MnX2 (X = S, Se) monolayers. , 2014, Physical chemistry chemical physics : PCCP.

[31]  Takashi Taniguchi,et al.  Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3 , 2018, Nature Communications.

[32]  Kentaro Takano,et al.  Exchange anisotropy — a review , 1999 .

[33]  M. Dresselhaus,et al.  Intercalation compounds of graphite , 1981 .

[34]  M. K. Wilkinson,et al.  Neutron Diffraction Investigation of the Magnetic Order in MnI 2 , 1962 .

[35]  Xiaofeng Qian,et al.  Electrically Tunable, High Curie Temperature 2D Ferromagnetism in Van der Waals Layered Crystals. , 2018, 1811.02674.

[36]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[38]  P. Schwaller,et al.  Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds , 2016, Nature Nanotechnology.

[39]  B. Lotsch,et al.  Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets. , 2016, Nano letters.

[40]  Dongzhi Yang,et al.  FeCl3 intercalated few-layer graphene for high lithium-ion storage performance , 2015 .

[41]  R. Hennig,et al.  Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials. , 2016, Physical review letters.

[42]  A. Krasheninnikov,et al.  van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. , 2012, Physical review letters.

[43]  Siddharth Rajan,et al.  Room Temperature Intrinsic Ferromagnetism in Epitaxial Manganese Selenide Films in the Monolayer Limit. , 2018, Nano letters.

[44]  S. Singh,et al.  Stable half-metallic monolayers of FeCl2 , 2015, 1507.08420.

[45]  Y. Kawazoe,et al.  The Intrinsic Ferromagnetism in a MnO2 Monolayer. , 2013, The journal of physical chemistry letters.

[46]  P. Kim,et al.  Synthesis and electrical characterization of magnetic bilayer graphene intercalate. , 2011, Nano letters.

[47]  Thomas Olsen,et al.  Calculating critical temperatures for ferromagnetic order in two-dimensional materials , 2018, 2D Materials.

[48]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[49]  D. Soriano,et al.  Van der Waals Spin Valves. , 2018, Physical review letters.

[50]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .