The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite

The Mars Odyssey Gamma-Ray Spectrometer is a suite of three different instruments, a gamma subsystem (GS), a neutron spectrometer, and a high-energy neutron detector, working together to collect data that will permit the mapping of elemental concentrations on the surface of Mars. The instruments are complimentary in that the neutron instruments have greater sensitivity to low amounts of hydrogen, but their signals saturate as the hydrogen content gets high. The hydrogen signal in the GS, on the other hand, does not saturate at high hydrogen contents and is sensitive to small differences in hydrogen content even when hydrogen is very abundant. The hydrogen signal in the neutron instruments and the GS have a different dependence on depth, and thus by combining both data sets we can infer not only the amount of hydrogen, but constrain its distribution with depth. In addition to hydrogen, the GS determines the abundances of several other elements. The instruments, the basis of the technique, and the data processing requirements are described as are some expected applications of the data to scientific problems.

[1]  W. Boynton,et al.  Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey , 2002, Science.

[2]  William V. Boynton,et al.  Elemental analysis of a comet nucleus by passive gamma ray spectrometry from a penetrator , 1986 .

[3]  R. Reedy,et al.  Interaction of solar and galactic cosmic-ray particles with the Moon , 1972 .

[4]  R. L. Schuch,et al.  Lunar Composition by Scintillation Spectroscopy , 1962, IRE Transactions on Nuclear Science.

[5]  Richard D. Starr,et al.  Elemental composition from gamma‐ray spectroscopy of the NEAR‐Shoemaker landing site on 433 Eros , 2001 .

[6]  D. Drake,et al.  Identification of lunar rock types and search for polar ice by gamma ray spectroscopy , 1990 .

[7]  H Y McSween,et al.  The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode. , 1997, Science.

[8]  Richard E. Lingenfelter,et al.  The lunar neutron flux revisited , 1972 .

[9]  W. Feldman,et al.  A Doppler filter technique to measure the hydrogen content of planetary surfaces , 1986 .

[10]  S. Seltzer,et al.  Reanalysis of the Apollo cosmic gamma-ray spectrum in the 0. 3 to 10 MeV energy region , 1977 .

[11]  H. Wänke,et al.  Chemical composition and accretion history of terrestrial planets , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[12]  R. Wiens,et al.  Evidence for water ice near the lunar poles , 2001 .

[13]  Thomas H. Prettyman,et al.  Composition from fast neutrons: Application to the Moon , 2001 .

[14]  B. Jakosky,et al.  Detectability of Martian carbonates from orbit using thermal neutrons , 1991 .

[15]  R. Pehl,et al.  High-Energy Proton Radiation Damage of High-Purity Germanium Detectors , 1978, IEEE Transactions on Nuclear Science.

[16]  P. A. J. Englert,et al.  Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits , 2002, Science.

[17]  M. Mellon,et al.  Redistribution of subsurface neutrons caused by ground ice on Mars , 1993 .

[18]  R. Reedy Planetary gamma-ray spectroscopy , 1978 .

[19]  K. Keil,et al.  Mixing relationships in the Martian regolith and the composition of globally homogeneous dust , 2000 .

[20]  G. J. Bamford,et al.  Analysis of Phobos mission gamma ray spectra from Mars , 1992 .

[21]  Paul G. Lucey,et al.  Iron abundances on the lunar surface as measured by the Lunar Prospector gamma‐ray and neutron spectrometers , 2002 .

[22]  R. Haberle,et al.  Year‐to‐year instability of the Mars south polar cap , 1990 .

[23]  W. Mahoney,et al.  The HEAO 3 gamma-ray spectrometer , 1980 .

[24]  J. Yellin,et al.  High energy irradiations simulating cosmic-ray-induced planetary gamma ray production. I - Fe target , 1986 .

[25]  J. Arnold,et al.  Gamma ray spectroscopic measurements of Mars. , 1970, Applied optics.

[26]  Richard D. Starr,et al.  Science applications of the Mars Observer gamma ray spectrometer , 1992 .

[27]  R. Reedy,et al.  Surface chemistry of selected lunar regions , 1976 .

[28]  A. Metzger,et al.  Atmospheric measurements at Mars via gamma ray spectroscopy , 1990 .

[29]  Thomas H. Prettyman,et al.  High resolution measurements of absolute thorium abundances on the lunar surface , 1999 .

[30]  Rudolf Rieder,et al.  Chemical Composition of Rocks and Soils at the Pathfinder Site , 2001 .

[31]  B. R. Hawke,et al.  Thorium concentrations in the lunar surface. IV - Deconvolution of the Mare Imbrium, Aristarchus, and adjacent regions , 1983 .

[32]  E. Anderson,et al.  Detection of an Interstellar Flux of Gamma-Rays , 1964, Nature.

[33]  B. Jakosky,et al.  Martian neutron leakage spectra , 1988 .

[34]  Robert C. Reedy,et al.  Expected γ ray emission spectra from the lunar surface as a function of chemical composition , 1973 .

[35]  Raymond E. Arvidson,et al.  2001 Mars Odyssey Mission Summary , 2004 .

[36]  F. Fanale,et al.  Distribution and state of H2O in the high-latitude shallow subsurface of Mars , 1986 .

[37]  R. Reedy,et al.  Neutron‐induced gamma ray spectroscopy: Simulations for chemical mapping of planetary surfaces , 1987 .

[38]  V. L. Barsukov,et al.  Determination of the elemental composition of martian rocks from Phobos 2 , 1989, Nature.

[39]  Richard E. Lingenfelter,et al.  The lunar neutron flux , 1961 .

[40]  Hugh H. Kieffer,et al.  Mars south polar spring and summer temperatures: A residual CO2 frost , 1979 .

[41]  N. Gehrels,et al.  Nuclear spectroscopy of astrophysical sources , 1988 .

[42]  Evans,et al.  The elemental composition of asteroid 433 eros: results of the NEAR-shoemaker X-ray spectrometer , 2000, Science.

[43]  David E. Smith,et al.  Seasonal Variations of Snow Depth on Mars , 2001, Science.

[44]  Robert C. Reedy,et al.  Effects of bulk composition on nuclide production processes in meteorites , 1994 .

[45]  Robert L. Tokar,et al.  Fast neutron flux spectrum aboard Mars Odyssey during cruise , 2001 .

[46]  Thomas H. Prettyman,et al.  The Lunar Prospector gamma ray and neutron spectrometers; overview of lunar global composition measurements , 1999 .

[47]  S. Squyres,et al.  Investigation of Martian H2O and Co2 via orbital gamma ray spectroscopy , 1987 .

[48]  Mitsuru Ebihara,et al.  Solar-system abundances of the elements , 1982 .

[49]  Zhong-wei Hu Solar system abundances of the elements. , 1991 .

[50]  Robert L. Tokar,et al.  Global Distribution of Neutrons from Mars: Results from Mars Odyssey , 2002, Science.

[51]  R. Reedy,et al.  Gamma ray production and transport in Mars , 1996 .

[52]  R. D. O'dell,et al.  Gravitational effects on planetary neutron flux spectra , 1989 .

[53]  E. Anderson,et al.  Gamma rays in space, ranger 3 , 1962 .

[54]  Jeffrey R. Johnson,et al.  Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site , 1999 .

[55]  A. N. Thakur Analysis of gamma-ray continuum spectra to determine the chemical composition , 1997 .

[56]  Alan B. Binder,et al.  Chemical information content of lunar thermal and epithermal neutrons , 2000 .

[57]  C. Pieters,et al.  Remote geochemical analysis : elemental and mineralogical composition , 1993 .

[58]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[59]  Lorraine Schnabel,et al.  Chemical composition of Martian fines , 1982 .

[60]  D. Filges,et al.  Monte Carlo simulation of martian gamma-ray spectra induced by galactic cosmic rays. , 1991 .

[61]  M. Malin,et al.  Evidence for recent groundwater seepage and surface runoff on Mars. , 2000, Science.

[62]  Thomas H. Prettyman,et al.  LIBRARY LEAST SQUARES ANALYSIS OF LUNAR PROSPECTOR GAMMA RAY SPECTRA. , 2002 .

[63]  J. I. Trombka,et al.  High-energy radiation background in space , 1989 .

[64]  Hugh H. Kieffer,et al.  Mars south polar spring and summer behavior observed by TES: Seasonal cap evolution controlled by frost grain size , 2000 .