Design of Digital FIR Filters Using Differential Evolution Algorithm

The differential evolution (DE) algorithm is a new heuristic approach with three main advantages: it finds the true global minimum of a multimodal search space regardless of the initial parameter values, it has fast convergence, and it uses only a few control parameters. The DE algorithm, which has been proposed particularly for numeric optimization problems, is a population-based algorithm like the genetic algorithms and uses similar operators: crossover, mutation, and selection. In this work, the DE algorithm has been applied to the design of digital finite impulse response filters, and its performance has been compared to that of the genetic algorithm and least squares method.

[1]  Francesco Piazza,et al.  Efficient allocation of power of two terms in FIR digital filter design using tabu search , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[2]  Nurhan Karaboga,et al.  Performance Comparison of Genetic and Differential Evolution Algorithms for Digital FIR Filter Design , 2004, ADVIS.

[3]  Ahmed Nabil Belbachir,et al.  A new approach to digital FIR filter design using the Tabu Search , 2000 .

[4]  YangYixian,et al.  Optimal Design of FIR Digital Filter Using Genetic Algorithm , 1998 .

[5]  P. Martinek,et al.  Multi-criterion filter design via differential evolution method for function minimization , 2002, ICCSC'02. 1st IEEE International Conference on Circuits and Systems for Communications. Proceedings (IEEE Cat. No.02EX605).

[6]  M. Ahmadi,et al.  Design of 1-D FIR filters with genetic algorithms , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[7]  M. Lang,et al.  Weighted least squares IIR filter design with arbitrary magnitude and phase responses and specified stability margin , 1998, 1998 IEEE Symposium on Advances in Digital Filtering and Signal Processing. Symposium Proceedings (Cat. No.98EX185).

[8]  G. Jullien,et al.  Digital filter design using genetic algorithm , 1998, 1998 IEEE Symposium on Advances in Digital Filtering and Signal Processing. Symposium Proceedings (Cat. No.98EX185).

[9]  Nurhan Karaboga,et al.  Efficient Design of Fixed Point Digital FIR Filters by Using Differential Evolution Algorithm , 2005, IWANN.

[10]  L. G. van Willigenburg,et al.  Efficient Differential Evolution algorithms for multimodal optimal control problems , 2003, Appl. Soft Comput..

[11]  H. Abbass,et al.  PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[12]  Roberto Rossi,et al.  Digital filter design through simulated evolution , 2001 .

[13]  L. E. Turner,et al.  Design of digital filters using simulated annealing , 1990, IEEE International Symposium on Circuits and Systems.

[14]  Sunder S. Kidambi,et al.  Comments on "2-D FIR filters design using least square error with scaling-free McClellan transformation" , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[15]  L. Litwin FIR and IIR digital filters , 2000 .

[16]  Malcolm J. A. Strens,et al.  Markov Chain Monte Carlo Sampling using Direct Search Optimization , 2002, ICML.

[17]  G. Wade,et al.  Multiplier-less FIR filter design using a genetic algorithm , 1994 .

[18]  Andrew W. Moore,et al.  Policy Search using Paired Comparisons , 2003, J. Mach. Learn. Res..

[19]  Michele Marchesi,et al.  Applications of simulated annealing for the design of special digital filters , 1992, IEEE Trans. Signal Process..

[20]  D. Ait-Boudaoud,et al.  Genetic approach to design of multiplierless FIR filters , 1993 .

[21]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..