Fuels and Energy for the Future: The Role of Catalysis

Abstract There are many reasons to decrease the dependency on oil and to increase the use of other energy sources than fossil fuels. The wish for energy security is balanced by a wish for sustainable growth. Catalysis plays an important role in creating new routes and flexibility in the network of energy sources, energy carriers, and energy conversion. The process technologies resemble those applied in the large scale manufacture of commodities. This is illustrated by examples from refinery fuels, synfuels, and hydrogen and the future role of fossil fuels is discussed.

[1]  Peter R. Pujado,et al.  Most recent developments in ethylene and propylene production from natural gas using the UOP/Hydro MTO process , 2004 .

[2]  Jens R. Rostrup-Nielsen,et al.  Steam reforming of liquid hydrocarbons , 1998 .

[3]  J. Rostrup-Nielsen Industrial catalysis, the science and the challenge: Conversion of fossil fuels , 1993 .

[4]  H. Holm-Larsen,et al.  CO2 reforming for large scale methanol plants - an actual case , 2001 .

[5]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[6]  G. Huber,et al.  Raney Ni-Sn Catalyst for H2 Production from Biomass-Derived Hydrocarbons , 2003, Science.

[7]  Timo Kivisaari,et al.  Conceptual study of a 250 kW planar SOFC system for CHP application , 2004 .

[8]  W. D. Powers,et al.  Hydrogen as an energy vector , 1975 .

[9]  Jean-Paul Lange,et al.  Fuels and Chemicals Manufacturing; Guidelines for Understanding and Minimizing the Production Costs , 2001 .

[10]  D. G. Wood,et al.  Chemical engineering : visions of the world , 2003 .

[11]  Jens R. Rostrup-Nielsen,et al.  Hydrogen and Synthesis gas by Steam- and CO2 reforming , 2002 .

[12]  Andre Peter Steynberg,et al.  Large scale production of high value hydrocarbons using Fischer-Tropsch technology , 2004 .

[13]  G. Jones,et al.  Market Led GTL: The Oxygenate Strategy , 2001 .

[14]  R. Sheldon Catalysis: The Key to Waste Minimization * , 1997 .

[15]  J. Rostrup-Nielsen Scale-Up of Catalytic Processes , 2000 .

[16]  K. Knudsen,et al.  Organic nitrogen compounds in gas oil blends, their hydrotreated products and the importance to hydrotreatment , 2001 .

[17]  Jens R. Rostrup-Nielsen,et al.  Innovation and the catalytic process industry-The science and the challenge , 1995 .

[18]  J. Fox,et al.  The Different Catalytic Routes for Methane Valorization: An Assessment of Processes for Liquid Fuels , 1993 .

[19]  Jens R. Rostrup-Nielsen Conversion of hydrocarbons and alcohols for fuel cells , 2001 .

[20]  M. L. Neelis,et al.  Exergetic life cycle analysis of hydrogen production and storage systems for automotive applications , 2004 .

[21]  J. Rostrup-Nielsen New aspects of syngas production and use , 2000 .

[22]  M. Kluth,et al.  Hydrothermal gasification of biomass and organic wastes , 2000 .

[23]  A. C. Dimian,et al.  Chemical Product Design , 2014 .

[24]  J. Hansen,et al.  High Conversion of Synthesis Gas into Oxygenates , 1991 .

[25]  P.J.A. Tijm,et al.  PROCESSES FOR CONVERTING METHANE TO LIQUID FUELS: ECONOMIC SCREENING THROUGH ENERGY MANAGEMENT , 1996 .

[26]  A. Poater,et al.  Catalysis Science and Technology , 2022 .

[28]  Jens R. Rostrup-Nielsen,et al.  Syngas in perspective , 2002 .

[29]  Judith Gurney BP Statistical Review of World Energy , 1985 .

[30]  X. Verykios,et al.  Renewable Hydrogen from Ethanol by Autothermal Reforming , 2004, Science.

[31]  L. Schmidt,et al.  The Effect of Ceramic Supports on Partial Oxidation of Hydrocarbons over Noble Metal Coated Monoliths , 1998 .

[32]  Jens R. Rostrup-Nielsen,et al.  Reaction kinetics and scale-up of catalytic processes , 2000 .

[33]  Hyman D. Gesser,et al.  Methanol formation at high pressure by the catalyzed oxidation of natural gas and by the sensitized oxidation of methane , 1990 .

[34]  J. Topp-Jørgensen Topsøe Integrated Gasoline Synthesis – The Tigas Process , 1988 .

[35]  Christopher L. Marshall,et al.  Review of Dimethyl Carbonate (DMC) Manufacture and Its Characteristics as a Fuel Additive , 1997 .

[36]  Jens R. Rostrup-Nielsen,et al.  Industrial relevance of coking , 1997 .

[37]  S. Yurchak,et al.  Development of Mobil's Fixed-Bed Methanul-to-Gasoline (MTG) Process , 1988 .

[38]  Jean-Paul Lange,et al.  Perspectives for Manufacturing Methanol at Fuel Value , 1997 .

[39]  Joan M. Ogden,et al.  A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development , 1999 .

[40]  J. Dalmon,et al.  CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts , 2003 .

[41]  Eric G. Derouane,et al.  Combinatorial catalysis and high throughput catalyst design and testing , 2000 .

[42]  K. P. Jong Efficient catalytic processes for the manufacturing of high-quality transportation fuels , 1996 .

[43]  J. Hansen,et al.  Large-scale production of alternative synthetic fuels from natural gas , 1997 .

[44]  Ib Dybkjaer,et al.  Ammonia Production Processes , 1995 .

[45]  D. C. Ion World Energy , 1981 .

[46]  Burton Richter Using Ethanol as an Energy Source , 2004, Science.

[47]  Jens R. Rostrup-Nielsen,et al.  Large-Scale Hydrogen Production , 2002 .