A generalization of parameterized inexact Uzawa method for singular saddle point problems

In this paper, we further study the generalized parameterized inexact Uzawa method for solving singular saddle point problems, obtaining the generalized parameterized inexact Uzawa (GPIU) method. Theoretical analysis shows that the semi-convergence of this new method can be guaranteed by suitable choices of the iteration parameters. Numerical experiments are used to demonstrate the feasibility and effectiveness of the generalized parameterized inexact Uzawa method for solving singular saddle point problems.

[1]  Howard C. Elman,et al.  Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.

[2]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[3]  Andrew J. Wathen,et al.  Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.

[4]  Li Wang,et al.  Weak-convergence theory of quasi-nonnegative splittings for singular matrices , 2003 .

[5]  Zeng-Qi Wang,et al.  Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems , 2006 .

[6]  Bing Zheng,et al.  On semi-convergence of parameterized Uzawa methods for singular saddle point problems☆ , 2009 .

[7]  Guo-Feng Zhang,et al.  A generalization of parameterized inexact Uzawa method for generalized saddle point problems , 2009, Appl. Math. Comput..

[8]  Apostol T. Vassilev,et al.  Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .

[9]  Z. Bai,et al.  Restrictively preconditioned conjugate gradient methods for systems of linear equations , 2003 .

[10]  Beresford N. Parlett,et al.  On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.

[11]  Gene H. Golub,et al.  SOR-like Methods for Augmented Systems , 2001 .

[12]  Gene H. Golub,et al.  Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .

[13]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.

[14]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[15]  A. Wathen,et al.  Minimum residual methods for augmented systems , 1998 .

[16]  Zeng-Qi Wang,et al.  On parameterized inexact Uzawa methods for generalized saddle point problems , 2008 .

[17]  Zhong-Zhi Bai,et al.  On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems , 2010, Computing.

[18]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[19]  X. Wu,et al.  Conjugate Gradient Method for Rank Deficient Saddle Point Problems , 2004, Numerical Algorithms.

[20]  W. Jason,et al.  アルゴリズム869:ODRPACK95:範囲制約のある重み付け直交距離回帰コード , 2007 .

[21]  Zhong-Zhi Bai,et al.  Structured preconditioners for nonsingular matrices of block two-by-two structures , 2005, Math. Comput..

[22]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[23]  Haifeng Ma,et al.  A note on block-diagonally preconditioned PIU methods for singular saddle point problems , 2011, Int. J. Comput. Math..

[24]  Ting-Zhu Huang,et al.  Spectral properties of the preconditioned AHSS iteration method for generalized saddle point problems , 2010 .

[25]  C. D. Meyer,et al.  Convergent Powers of a Matrix With Applications to Iterative Methods for Singular Linear Systems , 1975 .