Optimal allocation of power routers in a STATCOM-installed electric grid with high penetration of wind energy

Wind generation continues to increase as a source of renewable energy. However, adding intermittent renewable energy may lead to overloaded lines as well as low voltage buses. Static synchronous compensators (STATCOMs) can provide significant reactive power to ensure the voltage stability, but overloaded lines may still exist. Therefore, power routers, which route power away from overloaded lines to underutilized lines, are required. In order to provide the best power-flow control with the lowest cost, the power routers should be optimally designed, for both their ratings and locations. The coordination between the power routers and the STATCOMs should also be taken into consideration. This paper introduces a general approach to determine the optimal location and sizing of the power routers for a power system with overloaded lines, based on a particle swarm optimization (PSO) algorithm. Simulation studies on a 12-bus test system verify the proposed method.