Inherited Causes of Clonal Hematopoiesis of Indeterminate Potential in TOPMed Whole Genomes

Age is the dominant risk factor for most chronic human diseases; yet the mechanisms by which aging confers this risk are largely unknown.1 Recently, the age-related acquisition of somatic mutations in regenerating hematopoietic stem cell populations was associated with both hematologic cancer incidence2–4 and coronary heart disease prevalence.5 Somatic mutations with leukemogenic potential may confer selective cellular advantages leading to clonal expansion, a phenomenon termed ‘Clonal Hematopoiesis of Indeterminate Potential’ (CHIP).6 Simultaneous germline and somatic whole genome sequence analysis now provides the opportunity to identify root causes of CHIP. Here, we analyze high-coverage whole genome sequences from 97,691 participants of diverse ancestries in the NHLBI TOPMed program and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid, and inflammatory traits specific to different CHIP genes. Association of a genome-wide set of germline genetic variants identified three genetic loci associated with CHIP status, including one locus at TET2 that was African ancestry specific. In silico-informed in vitro evaluation of the TET2 germline locus identified a causal variant that disrupts a TET2 distal enhancer. Aggregates of rare germline loss-of-function variants in CHEK2, a DNA damage repair gene, predisposed to CHIP acquisition. Overall, we observe that germline genetic variation altering hematopoietic stem cell function and the fidelity of DNA-damage repair increase the likelihood of somatic mutations leading to CHIP.

Ivana V. Yang | Sebastian M. Armasu | Andrew D. Johnson | May E. Montasser | Nicholette D. Palmer | Erin J. Buth | M. D. Szeto | M. Fornage | L. Hou | J. Manson | A. Reiner | D. Levy | S. Redline | G. Abecasis | E. Lander | Hongyu Zhao | E. Boerwinkle | E. Silverman | D. Weeks | E. Burchard | W. Sheu | P. Ellinor | R. Vasan | Albert Vernon Smith | C. Kooperberg | J. Blangero | S. Weiss | B. Ebert | S. Kardia | B. Psaty | E. Lange | D. Roden | M. Taub | S. Kathiresan | K. Taylor | J. Rotter | L. Becker | B. Cade | D. Rao | K. Barnes | L. Bielak | P. Peyser | C. Laurie | B. Custer | D. Schwartz | L. Cupples | H. Tiwari | Xiuqing Guo | J. Broome | M. Cho | K. North | P. Natarajan | James G. Wilson | J. Bis | S. Wenzel | S. Rich | Jennifer A. Smith | M. de Andrade | L. Launer | S. Heckbert | D. Arnett | A. Correa | N. Palmer | D. Bowden | B. Freedman | T. Kelly | B. Mitchell | R. Loos | B. Levy | D. Meyers | M. Montasser | E. Kenny | R. Mathias | J. Curran | J. Nasser | J. Engreitz | P. Auer | J. Hixson | A. Bick | C. Fulco | Erik L. Bao | J. Peralta | J. Heit | R. Kaplan | S. Lubitz | L. Lange | T. Blackwell | T. Fingerlin | L. Williams | R. Tracy | Jiang He | S. Aslibekyan | M. Irvin | I. Yang | D. Darbar | S. Gogarten | C. Laurie | N. Rafaels | S. Zekavat | A. Mak | J. Lasky-Su | A. Moscati | M. Daya | B. Konkle | J. Johnsen | M. Shoemaker | L. Raffield | N. Smith | Q. Wong | E. Whitsel | V. Sankaran | M. Wheeler | S. McGarvey | J. Floyd | S. Jaiswal | P. Kachroo | E. Sabino | Satish K. Nandakumar | S. Armasu | Jee-Young Moon | J. Weinstock | I. Chen | H. Gui | Jiwon Lee | M. Szeto | Matthew J Leventhal | Fei Fei Wang | Erin J Buth | Pinkal M. Desai | Marsha M. Wheeler | S. McGarvey | S. Rich | S. Weiss | A. Smith | M. B. Shoemaker | D. Meyers | A. Johnson | Matthew J. Leventhal | Pinkal Desai | R. Kaplan | A. Smith | Kathleen C. Barnes | F. Wang | D. Rao | B. Psaty | R. Loos | Jerome I. Rotter | Benjamin L. Ebert | Albert V Smith | David A. Schwartz | James G. Wilson | Edwin K. Silverman | Braxton D. Mitchell | D. Levy | A. Correa | R. Loos | Kent D. Taylor | L. Cupples | Alexander P. Reiner | L. K. Williams | E. Sabino | Jennifer A. Smith | B. Psaty | Daniel E. Weeks | James E. Hixson | D. Rao | Nicholas L. Smith | Barbara A Konkle | Joann E Manson | Vijay G. Sankaran | Eric S. Lander | Donna K. Arnett | Esteban G. Burchard | Ramachandran S. Vasan | L. A. Cupples | Ivana V Yang | Lewis C. Becker | D. Roden | Russell P. Tracy | A. Bick | Bruce D. Levy | W. H. Sheu | S. Weiss | M. Cho | Mindy D Szeto | Ida Chen | Jill M Johnsen | James S. Floyd

[1]  S. Horvath,et al.  HIV-1 Infection Accelerates Age According to the Epigenetic Clock , 2015, The Journal of infectious diseases.

[2]  Jesse M. Engreitz,et al.  Activity-by-Contact model of enhancer specificity from thousands of CRISPR perturbations , 2019, bioRxiv.

[3]  M. McCarthy,et al.  Age-related clonal hematopoiesis associated with adverse outcomes. , 2014, The New England journal of medicine.

[4]  S. Gabriel,et al.  Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease , 2017, The New England journal of medicine.

[5]  Howard Y. Chang,et al.  Lineage-specific and single cell chromatin accessibility charts human hematopoiesis and leukemia evolution , 2016, Nature Genetics.

[6]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[7]  B. Ebert,et al.  Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. , 2015, Blood.

[8]  Lars G Fritsche,et al.  Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies , 2017, Nature Genetics.

[9]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[10]  R. Levine,et al.  Clonal Hematopoiesis and Evolution to Hematopoietic Malignancies. , 2018, Cell stem cell.

[11]  Wei Lu,et al.  Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer , 2013, Nature Genetics.

[12]  Joshua F. McMichael,et al.  Age-related cancer mutations associated with clonal hematopoietic expansion , 2014, Nature Medicine.

[13]  May E. Montasser,et al.  Deep-coverage whole genome sequences and blood lipids among 16,324 individuals , 2017, Nature Communications.

[14]  Ryan L. Collins,et al.  Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes , 2019, bioRxiv.

[15]  Yeting Zhang,et al.  Functional equivalence of genome sequencing analysis pipelines enables harmonized variant calling across human genetics projects , 2018, Nature Communications.

[16]  D. Bates,et al.  Linear Mixed-Effects Models using 'Eigen' and S4 , 2015 .

[17]  S. Bandinelli,et al.  Red cell distribution width and mortality in older adults: a meta-analysis. , 2010, The journals of gerontology. Series A, Biological sciences and medical sciences.

[18]  Jian Gu,et al.  Mosaic loss of chromosome Y is associated with common variation near TCL1A , 2016, Nature Genetics.

[19]  S. Gabriel,et al.  Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. , 2014, The New England journal of medicine.

[20]  Nicholas Eriksson,et al.  Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. , 2016, Blood.

[21]  Matthew A. Cooper,et al.  Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice , 2017, Science.

[22]  Richard T. Barfield,et al.  CpGassoc: an R function for analysis of DNA methylation microarray data , 2012, Bioinform..

[23]  Kari Stefansson,et al.  Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. , 2017, Blood.

[24]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[25]  Yakir A Reshef,et al.  Insights about clonal hematopoiesis from 8,342 mosaic chromosomal alterations , 2018, Nature.

[26]  J. Lubiński,et al.  CHEK2 is a multiorgan cancer susceptibility gene. , 2004, American journal of human genetics.

[27]  E. Schadt,et al.  Geroscience: Linking Aging to Chronic Disease , 2014, Cell.

[28]  F. Schmidt Meta-Analysis , 2008 .

[29]  Devin C. Koestler,et al.  DNA methylation arrays as surrogate measures of cell mixture distribution , 2012, BMC Bioinformatics.

[30]  R. Houlston,et al.  Variants in the ATM-BRCA2-CHEK2 axis predispose to chronic lymphocytic leukemia. , 2006, Blood.

[31]  Jean-Philippe Fortin,et al.  Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi , 2016, bioRxiv.

[32]  Anshul Kundaje,et al.  The ENCODE Blacklist: Identification of Problematic Regions of the Genome , 2019, Scientific Reports.

[33]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[34]  Brian E. Cade,et al.  Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program , 2019, Nature.