Inherited Causes of Clonal Hematopoiesis of Indeterminate Potential in TOPMed Whole Genomes
暂无分享,去创建一个
Ivana V. Yang | Sebastian M. Armasu | Andrew D. Johnson | May E. Montasser | Nicholette D. Palmer | Erin J. Buth | M. D. Szeto | M. Fornage | L. Hou | J. Manson | A. Reiner | D. Levy | S. Redline | G. Abecasis | E. Lander | Hongyu Zhao | E. Boerwinkle | E. Silverman | D. Weeks | E. Burchard | W. Sheu | P. Ellinor | R. Vasan | Albert Vernon Smith | C. Kooperberg | J. Blangero | S. Weiss | B. Ebert | S. Kardia | B. Psaty | E. Lange | D. Roden | M. Taub | S. Kathiresan | K. Taylor | J. Rotter | L. Becker | B. Cade | D. Rao | K. Barnes | L. Bielak | P. Peyser | C. Laurie | B. Custer | D. Schwartz | L. Cupples | H. Tiwari | Xiuqing Guo | J. Broome | M. Cho | K. North | P. Natarajan | James G. Wilson | J. Bis | S. Wenzel | S. Rich | Jennifer A. Smith | M. de Andrade | L. Launer | S. Heckbert | D. Arnett | A. Correa | N. Palmer | D. Bowden | B. Freedman | T. Kelly | B. Mitchell | R. Loos | B. Levy | D. Meyers | M. Montasser | E. Kenny | R. Mathias | J. Curran | J. Nasser | J. Engreitz | P. Auer | J. Hixson | A. Bick | C. Fulco | Erik L. Bao | J. Peralta | J. Heit | R. Kaplan | S. Lubitz | L. Lange | T. Blackwell | T. Fingerlin | L. Williams | R. Tracy | Jiang He | S. Aslibekyan | M. Irvin | I. Yang | D. Darbar | S. Gogarten | C. Laurie | N. Rafaels | S. Zekavat | A. Mak | J. Lasky-Su | A. Moscati | M. Daya | B. Konkle | J. Johnsen | M. Shoemaker | L. Raffield | N. Smith | Q. Wong | E. Whitsel | V. Sankaran | M. Wheeler | S. McGarvey | J. Floyd | S. Jaiswal | P. Kachroo | E. Sabino | Satish K. Nandakumar | S. Armasu | Jee-Young Moon | J. Weinstock | I. Chen | H. Gui | Jiwon Lee | M. Szeto | Matthew J Leventhal | Fei Fei Wang | Erin J Buth | Pinkal M. Desai | Marsha M. Wheeler | S. McGarvey | S. Rich | S. Weiss | A. Smith | M. B. Shoemaker | D. Meyers | A. Johnson | Matthew J. Leventhal | Pinkal Desai | R. Kaplan | A. Smith | Kathleen C. Barnes | F. Wang | D. Rao | B. Psaty | R. Loos | Jerome I. Rotter | Benjamin L. Ebert | Albert V Smith | David A. Schwartz | James G. Wilson | Edwin K. Silverman | Braxton D. Mitchell | D. Levy | A. Correa | R. Loos | Kent D. Taylor | L. Cupples | Alexander P. Reiner | L. K. Williams | E. Sabino | Jennifer A. Smith | B. Psaty | Daniel E. Weeks | James E. Hixson | D. Rao | Nicholas L. Smith | Barbara A Konkle | Joann E Manson | Vijay G. Sankaran | Eric S. Lander | Donna K. Arnett | Esteban G. Burchard | Ramachandran S. Vasan | L. A. Cupples | Ivana V Yang | Lewis C. Becker | D. Roden | Russell P. Tracy | A. Bick | Bruce D. Levy | W. H. Sheu | S. Weiss | M. Cho | Mindy D Szeto | Ida Chen | Jill M Johnsen | James S. Floyd
[1] S. Horvath,et al. HIV-1 Infection Accelerates Age According to the Epigenetic Clock , 2015, The Journal of infectious diseases.
[2] Jesse M. Engreitz,et al. Activity-by-Contact model of enhancer specificity from thousands of CRISPR perturbations , 2019, bioRxiv.
[3] M. McCarthy,et al. Age-related clonal hematopoiesis associated with adverse outcomes. , 2014, The New England journal of medicine.
[4] S. Gabriel,et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease , 2017, The New England journal of medicine.
[5] Howard Y. Chang,et al. Lineage-specific and single cell chromatin accessibility charts human hematopoiesis and leukemia evolution , 2016, Nature Genetics.
[6] Ryan L. Collins,et al. The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.
[7] B. Ebert,et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. , 2015, Blood.
[8] Lars G Fritsche,et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies , 2017, Nature Genetics.
[9] Cheng Li,et al. Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.
[10] R. Levine,et al. Clonal Hematopoiesis and Evolution to Hematopoietic Malignancies. , 2018, Cell stem cell.
[11] Wei Lu,et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer , 2013, Nature Genetics.
[12] Joshua F. McMichael,et al. Age-related cancer mutations associated with clonal hematopoietic expansion , 2014, Nature Medicine.
[13] May E. Montasser,et al. Deep-coverage whole genome sequences and blood lipids among 16,324 individuals , 2017, Nature Communications.
[14] Ryan L. Collins,et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes , 2019, bioRxiv.
[15] Yeting Zhang,et al. Functional equivalence of genome sequencing analysis pipelines enables harmonized variant calling across human genetics projects , 2018, Nature Communications.
[16] D. Bates,et al. Linear Mixed-Effects Models using 'Eigen' and S4 , 2015 .
[17] S. Bandinelli,et al. Red cell distribution width and mortality in older adults: a meta-analysis. , 2010, The journals of gerontology. Series A, Biological sciences and medical sciences.
[18] Jian Gu,et al. Mosaic loss of chromosome Y is associated with common variation near TCL1A , 2016, Nature Genetics.
[19] S. Gabriel,et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. , 2014, The New England journal of medicine.
[20] Nicholas Eriksson,et al. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. , 2016, Blood.
[21] Matthew A. Cooper,et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice , 2017, Science.
[22] Richard T. Barfield,et al. CpGassoc: an R function for analysis of DNA methylation microarray data , 2012, Bioinform..
[23] Kari Stefansson,et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. , 2017, Blood.
[24] D. Bates,et al. Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.
[25] Yakir A Reshef,et al. Insights about clonal hematopoiesis from 8,342 mosaic chromosomal alterations , 2018, Nature.
[26] J. Lubiński,et al. CHEK2 is a multiorgan cancer susceptibility gene. , 2004, American journal of human genetics.
[27] E. Schadt,et al. Geroscience: Linking Aging to Chronic Disease , 2014, Cell.
[28] F. Schmidt. Meta-Analysis , 2008 .
[29] Devin C. Koestler,et al. DNA methylation arrays as surrogate measures of cell mixture distribution , 2012, BMC Bioinformatics.
[30] R. Houlston,et al. Variants in the ATM-BRCA2-CHEK2 axis predispose to chronic lymphocytic leukemia. , 2006, Blood.
[31] Jean-Philippe Fortin,et al. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi , 2016, bioRxiv.
[32] Anshul Kundaje,et al. The ENCODE Blacklist: Identification of Problematic Regions of the Genome , 2019, Scientific Reports.
[33] A. Sivachenko,et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.
[34] Brian E. Cade,et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program , 2019, Nature.