Finite-difference simulation of borehole EM measurements in 3D anisotropic media using coupled scalar-vector potentials

This paper describes the implementation and successful validation of a new staggered-grid, finite-difference algorithm for the numerical simulation of frequency-domain electromagnetic borehole measurements. The algorithm is basedonacoupledscalar-vectorpotentialformulationforarbitrary 3D inhomogeneous electrically anisotropic media. We approximate the second-order partial differential equations for the coupled scalar-vector potentials with central finite differences on both Yee’s staggered and standard grids. Thediscretizationofthepartialdifferentialequationsandthe enforcement of the appropriate boundary conditions yields a complex linear system of equations that we solve iteratively using the biconjugate gradient method with preconditioning. Theaccuracyandefficiencyofthealgorithmisassessedwith examples of multicomponent-borehole electromagnetic-induction measurements acquired in homogeneous, 1D anisotropic,2Disotropic,and3Danisotropicrockformations.The simulation examples consider vertical and deviated wells with and without borehole and mud-filtrate invasion regions. Simulation results obtained with the scalar-vector coupled potentialformulationfavorablycompareinaccuracywithresults obtained with 1D, 2D, and 3D benchmarking codes in the dc to megahertz frequency range for large contrasts of electricalconductivity.Ournumericalexercisesindicatethat the coupled scalar-vector potential equations provide a generalandconsistentalgorithmicformulationtosimulateborehole electromagnetic measurements from dc to megahertz in the presence of large conductivity contrasts, dipping wells, electrically anisotropic media, and geometrically complex modelsofelectricalconductivity.

[1]  David L. Alumbaugh,et al.  One-Dimensional Inversion of Three-Component Induction Logging In Anisotropic Media , 2001 .

[2]  Ronold W. P. King,et al.  Fundamental electromagnetic theory and applications , 1986 .

[3]  Sofia Davydycheva,et al.  An efficient finite‐difference scheme for electromagnetic logging in 3D anisotropic inhomogeneous media , 2003 .

[4]  Carlos Torres-Verdín,et al.  Finite-difference Modeling of EM Fields Using Coupled Potentials In 3D Anisotropic Media: Application to Borehole Logging , 2003 .

[5]  Carlos Torres-Verdín,et al.  Efficient 3-D Electromagnetic Modeling in the Presence of Anisotropic Conductive Media Using Integral Equations , 2003 .

[6]  Uri M. Ascher,et al.  Fast Finite Volume Simulation of 3D Electromagnetic Problems with Highly Discontinuous Coefficients , 2000, SIAM J. Sci. Comput..

[7]  Gregory A. Newman,et al.  Electromagnetic induction in a fully 3‐D anisotropic earth , 2000 .

[8]  E. Haber,et al.  Fast Simulation of 3D Electromagnetic Problems Using Potentials , 2000 .

[9]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[10]  Gregory A. Newman,et al.  Electromagnetic induction in a generalized 3D anisotropic earth, Part 2: The LIN preconditioner , 2003 .

[11]  Sofia Davydycheva,et al.  A Finite Difference Scheme for Elliptic Equations with Rough Coefficients Using a Cartesian Grid Nonconforming to Interfaces , 1999 .

[12]  Vladimir Druskin,et al.  New spectral Lanczos decomposition method for induction modeling in arbitrary 3-D geometry , 1999 .

[13]  O. Axelsson Iterative solution methods , 1995 .

[14]  J. Bladel,et al.  Electromagnetic Fields , 1985 .

[15]  G. Gao Simulation of borehole electromagnetic measurements in dipping and anisotropic rock formations and inversion of array induction data , 2005 .

[16]  Tsili Wang,et al.  3‐D electromagnetic anisotropy modeling using finite differences , 2001 .

[17]  J. T. Smith Conservative modeling of 3-D electromagnetic fields, Part II: Biconjugate gradient solution and an accelerator , 1996 .

[18]  Gregory A. Newman,et al.  Three-dimensional induction logging problems, Part 2: A finite-difference solution , 2002 .