A fast signal subspace approach for the determination of absolute levels from phased microphone array measurements

Phased microphone arrays are used in a variety of applications for the estimation of acoustic source location and spectra. The popular conventional delay-and-sum beamforming methods used with such arrays suffer from inaccurate estimations of absolute source levels and in some cases also from low resolution. Deconvolution approaches such as DAMAS have better performance, but require high computational effort. A fast beamforming method is proposed that can be used in conjunction with a phased microphone array in applications with focus on the correct quantitative estimation of acoustic source spectra. This method bases on an eigenvalue decomposition of the cross spectral matrix of microphone signals and uses the eigenvalues from the signal subspace to estimate absolute source levels. The theoretical basis of the method is discussed together with an assessment of the quality of the estimation. Experimental tests using a loudspeaker setup and an airfoil trailing edge noise setup in an aeroacoustic wind tunnel show that the proposed method is robust and leads to reliable quantitative results.

[1]  P. Stoica,et al.  Sparsity constrained deconvolution approaches for acoustic source mapping. , 2008, The Journal of the Acoustical Society of America.

[2]  Georges Elias,et al.  Level Estimation of Extended Acoustic Sources Using a Parametric Method , 2004 .

[3]  M. Morf,et al.  The signal subspace approach for multiple wide-band emitter location , 1983 .

[4]  Paul T. Soderman,et al.  Microphone Measurements In and Out of Airstream , 2002 .

[5]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[6]  Thomas F. Brooks,et al.  A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) Determined from Phased Microphone Arrays , 2004 .

[7]  Petre Stoica,et al.  Introduction to spectral analysis , 1997 .

[8]  Dean Long,et al.  Acoustic Source Location in Wind Tunnel Tests via Subspace Beamforming , 2003 .

[9]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[10]  Jr William M. Humphreys,et al.  Design and Use of Microphone Directional Arrays for Aeroacoustic Measurements , 1998 .

[11]  Thomas F. Brooks,et al.  Airfoil self-noise and prediction , 1989 .

[12]  Pieter Sijtsma,et al.  CLEAN Based on Spatial Source Coherence , 2007 .

[13]  Stefan Funke,et al.  Noise Source Analysis of an Aeroengine with a new Inverse Method SODIX , 2008 .

[14]  W. S. Liggett,et al.  Passive Sonar Processing for Noise with Unknown Covariance Structure , 1972 .

[15]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[16]  R. K. Amiet Refraction of sound by a shear layer , 1977 .

[17]  Jian Li,et al.  Wideband RELAX and wideband CLEAN for aeroacoustic imaging. , 2004 .

[18]  Ennes Sarradj,et al.  Acoustic and aerodynamic design and characterization of a small-scale aeroacoustic wind tunnel , 2009 .

[19]  Jr William M. Humphreys,et al.  Effect of Directional Array Size on the Measurement of Airframe Noise Components , 1999 .

[20]  Robert P. Dougherty,et al.  Beamforming In Acoustic Testing , 2002 .

[21]  Robert P. Dougherty,et al.  Extensions of DAMAS and Benefits and Limitations of Deconvolution in Beamforming , 2005 .

[22]  Ennes Sarradj,et al.  Measurement of the noise generation at the trailing edge of porous airfoils , 2010 .

[23]  Jian Li,et al.  On robust Capon beamforming and diagonal loading , 2003, IEEE Trans. Signal Process..

[24]  B.D. Van Veen,et al.  Beamforming: a versatile approach to spatial filtering , 1988, IEEE ASSP Magazine.

[25]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[26]  Takao Suzuki,et al.  Identification of multipole noise sources in low Mach number jets near the peak frequency , 2006 .

[27]  Marianne Mosher,et al.  Microphone Array Phased Processing System (MAPPS): Phased Array System for Acoustic Measurements in a Wind Tunnel , 1999 .

[28]  K. Ehrenfried,et al.  Comparison of Iterative Deconvolution Algorithms for the Mapping of Acoustic Sources , 2007 .

[29]  Richard A. Gramann,et al.  Aeroacoustic measurements in wind tunnels using adaptive beamforming methods , 1995 .

[30]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[31]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[32]  Jian Li,et al.  Constant-beamwidth and constant-powerwidth wideband robust capon beamformers for acoustic imaging , 2004 .

[33]  Pieter Sijtsma,et al.  DETERMINATION OF ABSOLUTE LEVELS FROM PHASED ARRAY MEASUREMENTS USING SPATIAL SOURCE COHERENCE , 2002 .

[34]  Robert P. Dougherty,et al.  SIDELOBE SUPPRESSION FOR PHASED ARRAY AEROACOUSTIC MEASUREMENTS , 1998 .

[35]  Takao Suzuki Generalized Inverse Beam-forming Algorithm Resolving Coherent/Incoherent, Distributed and Multipole Sources , 2008 .

[36]  Thomas F. Brooks,et al.  Extension of DAMAS Phased Array Processing for Spatial Coherence Determination (DAMAS-C) , 2006 .