Electron and proton heating by solar wind turbulence

[1] Previous formulations of heating and transport associated with strong magnetohydrodynamic (MHD) turbulence are generalized to incorporate separate internal energy equations for electrons and protons. Electron heat conduction is included. Energy is supplied by turbulent heating that affects both electrons and protons and is exchanged between them via collisions. Comparison to available Ulysses data shows that a reasonable accounting for the data is provided when (1) the energy exchange timescale is very long and (2) the deposition of heat due to turbulence is divided, with 60% going to proton heating and 40% into electron heating. Heat conduction, determined here by an empirical fit, plays a major role in describing the electron data.

[1]  W. Matthaeus,et al.  EMPIRICAL CONSTRAINTS ON PROTON AND ELECTRON HEATING IN THE FAST SOLAR WIND , 2009, 0907.2650.

[2]  A. Lazarus,et al.  Hot solar-wind helium: direct evidence for local heating by Alfvén-cyclotron dissipation. , 2008, Physical review letters.

[3]  J. Borovsky,et al.  Damping of long‐wavelength kinetic Alfvén fluctuations: Linear theory , 2008 .

[4]  W. Matthaeus,et al.  Evolution of turbulent magnetic fluctuation power with heliocentric distance , 2008 .

[5]  M. Kivelson,et al.  Interplanetary Magnetic Taylor Microscale and Implications for Plasma Dissipation , 2008 .

[6]  A. Noullez,et al.  Heating the Solar Wind by a Magnetohydrodynamic Turbulent Energy Cascade , 2008 .

[7]  Hui Li,et al.  Cascade of whistler turbulence: Particle‐in‐cell simulations , 2008 .

[8]  W. Matthaeus,et al.  Turbulence transport throughout the heliosphere , 2007 .

[9]  Charles W. Smith,et al.  The Turbulent Cascade at 1 AU: Energy Transfer and the Third-Order Scaling for MHD , 2007 .

[10]  A. Vaivads,et al.  Dissipation in turbulent plasma due to reconnection in thin current sheets. , 2007, Physical review letters.

[11]  S. Cranmer,et al.  Self-consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence , 2007, astro-ph/0703333.

[12]  M. Velli,et al.  Alfvén Waves and Turbulence in the Solar Atmosphere and Solar Wind , 2007 .

[13]  J. Richardson,et al.  Turbulent Heating of the Solar Wind by Newborn Interstellar Pickup Protons , 2006 .

[14]  T. Horbury,et al.  Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. , 2005, Physical review letters.

[15]  W. Matthaeus,et al.  Radial evolution of cross helicity in high‐latitude solar wind , 2005 .

[16]  N. Haugen,et al.  Delayed correlation between turbulent energy injection and dissipation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  J. Borovsky,et al.  Alfvén-cyclotron fluctuations: Linear Vlasov theory , 2004 .

[18]  Ben Breech,et al.  Transport of cross helicity and radial evolution of Alfvénicity in the solar wind , 2004 .

[19]  W. Matthaeus,et al.  Turbulent Heating of the Distant Solar Wind by Interstellar Pickup Protons , 2003 .

[20]  S. Cranmer,et al.  Alfvénic Turbulence in the Extended Solar Corona: Kinetic Effects and Proton Heating , 2003, astro-ph/0305134.

[21]  J. Richardson,et al.  Heating of the low‐latitude solar wind by dissipation of turbulent magnetic fluctuations , 2001 .

[22]  L. Milano,et al.  Wave-driven Turbulent Coronal Heating in Open Field Line Regions: Nonlinear Phenomenological Model , 2001 .

[23]  B. Bavassano,et al.  On the evolution of outward and inward Alfvénic fluctuations in the polar wind , 2000 .

[24]  B. Bavassano,et al.  Alfvénic turbulence in the polar wind: A statistical study on cross helicity and residual energy variations , 2000 .

[25]  B. Barraclough,et al.  Solar wind observations over Ulysses' first full polar orbit , 2000 .

[26]  Charles W. Smith,et al.  Dissipation range dynamics: Kinetic Alfvn waves and the importance of , 1999 .

[27]  E. Scime,et al.  The electron heat flux in the polar solar wind: Ulysses observations , 1999 .

[28]  W. Matthaeus,et al.  Turbulence, spatial transport, and heating of the solar wind , 1999 .

[29]  Contribution of Cyclotron-resonant Damping to Kinetic Dissipation of Interplanetary Turbulence , 1998, astro-ph/9809017.

[30]  W. Matthaeus,et al.  Evolution of turbulent magnetic fluctuation power with heliospheric distance , 1996 .

[31]  C. Ferro-Fontán,et al.  Nonlocal Heat Transport in the Solar Wind , 1996 .

[32]  W. Matthaeus,et al.  Linear transport of solar wind fluctuations , 1995 .

[33]  J. Phillips,et al.  Radial and meridional trends in solar wind thermal electron temperature and anisotropy: Ulysses , 1995 .

[34]  W. Feldman,et al.  Regulation of the solar wind electron heat flux from 1 to 5 AU: Ulysses observations , 1994 .

[35]  E. Marsch,et al.  Modeling results on spatial transport and spectral transfer of solar wind Alfvénic turbulence , 1993 .

[36]  David J. McComas,et al.  The Ulysses solar wind plasma experiment , 1992 .

[37]  W. Matthaeus,et al.  Transport and turbulence modeling of solar wind fluctuations , 1990 .

[38]  H. Rosenbauer,et al.  Large‐scale variations of thermal electron parameters in the solar wind between 0.3 and 1 AU , 1990 .

[39]  J. Scudder,et al.  A THEORY OF LOCAL. AND GLOBAL PROCESSES WHICH AFFECT SOLAR WIND ELECTRONS , 2011 .

[40]  J. Hollweg,et al.  Collisionless electron heat conduction in the solar wind , 1976 .

[41]  P. Hudson Coronal expansion and the solar wind: A.J. Hundhausen: Springer, Berlin. 1972. xii + 238. DM 68. U.S. $21.60 , 1973 .

[42]  A. Hundhausen,et al.  Coronal Expansion and Solar Wind , 1972 .

[43]  P. Coleman Turbulence, viscosity, and dissipation in the solar-wind plasma , 1968 .

[44]  W. B. Thompson Transport Processes in the Plasma , 1960 .

[45]  L. Spitzer,et al.  TRANSPORT PHENOMENA IN A COMPLETELY IONIZED GAS , 1953 .

[46]  Geoffrey Ingram Taylor,et al.  The Statistical Theory of Isotropic Turbulence , 1937 .

[47]  H. Allen,et al.  Proton and Electron. , 1931, Nature.