Sparse recovery and Kronecker products

In this note will consider sufficient conditions for sparse recovery such as Spark, coherence, restricted isometry property (RIP) and null space property (NSP). Then we will discuss the solution of underdetermined linear equations when the matrix is the Kronecker product of matrices. Specially we will explain how NSP behave in the case where the matrix is the Kronecker product of matrices.

[1]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[2]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[3]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[5]  Informationstechnik Berlin,et al.  Exact and Approximate Sparse Solutions of Underdetermined Linear Equations , 2007 .

[6]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[7]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[8]  E.J. Candes Compressive Sampling , 2022 .

[9]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[10]  Emmanuel J. Cand The Restricted Isometry Property and Its Implications for Compressed Sensing , 2008 .

[11]  Emmanuel J. Candès,et al.  Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..

[12]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[13]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[14]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[15]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[16]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[17]  Richard G. Baraniuk,et al.  Kronecker Compressive Sensing , 2012, IEEE Transactions on Image Processing.

[18]  V. Mehrmann,et al.  Sparse solutions to underdetermined Kronecker product systems , 2009 .

[19]  F. R. Gantmakher The Theory of Matrices , 1984 .

[20]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[21]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[22]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[23]  Jean-Jacques Fuchs,et al.  Recovery of exact sparse representations in the presence of bounded noise , 2005, IEEE Transactions on Information Theory.

[24]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.