A computational substrate for incentive salience

[1]  R. Bellman Dynamic programming. , 1957, Science.

[2]  R. Wise,et al.  Neuroleptic-induced "anhedonia" in rats: pimozide blocks reward quality of food. , 1978, Science.

[3]  R. Wise Neuroleptics and operant behavior: The anhedonia hypothesis , 1982, Behavioral and Brain Sciences.

[4]  A. Dickinson Actions and habits: the development of behavioural autonomy , 1985 .

[5]  Joel L. Davis,et al.  A Model of How the Basal Ganglia Generate and Use Neural Signals That Predict Reinforcement , 1994 .

[6]  Joel L. Davis,et al.  In : Models of Information Processing in the Basal Ganglia , 2008 .

[7]  Peter Dayan,et al.  Bee foraging in uncertain environments using predictive hebbian learning , 1995, Nature.

[8]  S. Ikemoto,et al.  Dissociations between appetitive and consummatory responses by pharmacological manipulations of reward-relevant brain regions. , 1996, Behavioral neuroscience.

[9]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[10]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[12]  J. Salamone,et al.  Behavioral functions of nucleus accumbens dopamine: Empirical and conceptual problems with the anhedonia hypothesis , 1997, Neuroscience & Biobehavioral Reviews.

[13]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[14]  P. Montague,et al.  A Computational Role for Dopamine Delivery in Human Decision-Making , 1998, Journal of Cognitive Neuroscience.

[15]  K. Berridge,et al.  What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? , 1998, Brain Research Reviews.

[16]  P. Garris,et al.  Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation , 1999, Nature.

[17]  P. Redgrave,et al.  Is the short-latency dopamine response too short to signal reward error? , 1999, Trends in Neurosciences.

[18]  S. Ikemoto,et al.  The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking , 1999, Brain Research Reviews.

[19]  M. B. Rooney,et al.  Extracellular dopamine dynamics in rat caudate–putamen during experimenter-delivered and intracranial self-stimulation , 2000, Neuroscience.

[20]  Samuel M. McClure,et al.  Predictability Modulates Human Brain Response to Reward , 2001, The Journal of Neuroscience.

[21]  Peter Dayan,et al.  Motivated Reinforcement Learning , 2001, NIPS.

[22]  Sham M. Kakade,et al.  Opponent interactions between serotonin and dopamine , 2002, Neural Networks.

[23]  P. Dayan,et al.  Reward, Motivation, and Reinforcement Learning , 2002, Neuron.

[24]  P. Montague,et al.  Activity in human ventral striatum locked to errors of reward prediction , 2002, Nature Neuroscience.

[25]  J. Salamone,et al.  Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine , 2002, Behavioural Brain Research.

[26]  Samuel M. McClure,et al.  Temporal Prediction Errors in a Passive Learning Task Activate Human Striatum , 2003, Neuron.

[27]  Karl J. Friston,et al.  Temporal Difference Models and Reward-Related Learning in the Human Brain , 2003, Neuron.

[28]  Richard S. Sutton,et al.  Reinforcement Learning , 1992, Handbook of Machine Learning.