A Large Stellar Evolution Database for Population Synthesis Studies. II. Stellar Models and Isochrones for an α-enhanced Metal Distribution

We present a large, new set of stellar evolution models and isochrones for an α-enhanced metal distribution typical of Galactic halo and bulge stars; it represents a homogeneous extension of our stellar model library for a scaled-solar metal distribution already presented by Pietrinferni et al. The effect of the α-element enhancement has been properly taken into account in the nuclear network, opacity, equation of state, and for the first time in the bolometric corrections and color transformations. This allows us to avoid the inconsistent use—common to all α-enhanced model libraries currently available—of scaled-solar bolometric corrections and color transformations for α-enhanced models and isochrones. We show how bolometric corrections to magnitudes obtained for the U, B portion of stellar spectra for Teff ≤ 6500 K are significantly affected by the metal mixture, especially at the higher metallicities. Our models cover both an extended mass range (between 0.5 and 10 M☉, with a fine mass spacing) and a broad metallicity range, including 11 values of the metal mass fraction Z, corresponding to the range -2.6 ≤ [Fe/H] ≤ 0.05. The initial He mass fraction is Y = 0.245 for the most metal-poor models, and it increases with Z, according to ΔY/ΔZ = 1.4. Models with and without the inclusion of overshoot from the convective cores during the central H-burning phase are provided, as well as models with different mass loss efficiencies. We also provide complete sets of evolutionary models for low-mass, He-burning stellar structures cover the whole metallicity range. This database, used in combination with our scaled-solar model library, is a valuable tool for investigating both Galactic and extragalactic simple and composite stellar populations, using stellar population synthesis techniques.

[1]  L. Ferraro,et al.  Near-infrared photometry of four metal-rich bulge globular clusters: NGC 6304, 6569, 6637 and 6638 , 2005, astro-ph/0505105.

[2]  M. Dolci,et al.  Near-Infrared Observations of RR Lyrae Variables in Galactic Globular Clusters. I. The Case of M92 , 2005, astro-ph/0503140.

[3]  Marco Riello,et al.  A homogeneous set of globular cluster relative distances and reddenings , 2004, astro-ph/0408462.

[4]  G. Piotto,et al.  Transforming observational data and theoretical isochrones into the ACS/WFC Vega-mag system , 2004, astro-ph/0412328.

[5]  R. Gratton,et al.  Abundance Variations within Globular Clusters , 2004 .

[6]  A. Pietrinferni,et al.  Color Transformations and Bolometric Corrections for Galactic Halo Stars: α-Enhanced versus Scaled-Solar Results , 2004, astro-ph/0408111.

[7]  S. Cassisi,et al.  A Large Stellar Evolution Database for Population Synthesis Studies. I. Scaled Solar Models and Isochrones , 2004, astro-ph/0405193.

[8]  Marco Riello,et al.  The Initial Helium Abundance of the Galactic Globular Cluster System , 2004, astro-ph/0403600.

[9]  Napoli,et al.  New Optical and Near-Infrared Surface Brightness Fluctuation Models: A Primary Distance Indicator Ranging from Globular Clusters to Distant Galaxies? , 2003, astro-ph/0303325.

[10]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[11]  D. Alexander,et al.  The Y2 Isochrones for α-Element Enhanced Mixtures , 2002, astro-ph/0208175.

[12]  M. Catelán,et al.  Age as the Second Parameter in NGC 288/NGC 362? II. The Horizontal Branch Revisited , 2001, astro-ph/0109028.

[13]  C. Ree,et al.  Toward Better Age Estimates for Stellar Populations: The Y2 Isochrones for Solar Mixture , 2001, astro-ph/0104292.

[14]  J. Carpenter Color Transformations for the 2MASS Second Incremental Data Release , 2001, astro-ph/0101463.

[15]  F. Grundahl,et al.  A Distance-Independent Age for the Globular Cluster M92 , 2000 .

[16]  V. Castellani,et al.  Predicted colours for simple stellar populations - II. The case of old stellar clusters , 2000 .

[17]  D. VandenBerg Models for Old, Metal-Poor Stars with Enhanced α-Element Abundances. II. Their Implications for the Ages of the Galaxy’s Globular Clusters and Field Halo Stars , 2000 .

[18]  D. Alexander,et al.  Models for Old, Metal-poor Stars with Enhanced α-Element Abundances. I. Evolutionary Tracks and ZAHB Loci; Observational Constraints , 2000 .

[19]  S. Faber,et al.  The Stellar Population Histories of Local Early-Type Galaxies. I. Population Parameters , 2000, astro-ph/0001072.

[20]  L. Girardi,et al.  Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.

[21]  G. Piotto,et al.  Galactic Globular Cluster Relative Ages , 1999, astro-ph/9907394.

[22]  G. Chabrier,et al.  Partially ionized hydrogen plasma in strong magnetic fields. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  Gisella Clementini,et al.  Distances, Ages, and Epoch of Formation of Globular Clusters , 1999, astro-ph/9902086.

[24]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[25]  F. Grundahl,et al.  Strömgren Photometry of Globular Clusters: The Distance and Age of M13, Evidence for Two Populations of Horizontal-Branch Stars , 1998, astro-ph/9806081.

[26]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[27]  A. Weiss,et al.  Erratum: "The Age of the Oldest Globular Clusters" (ApJ, 479, 665 [1997]) , 1997 .

[28]  R. G. Gratton,et al.  Abundances for globular cluster giants: I. homogeneous metallicities for 24 clusters , 1996, astro-ph/9607078.

[29]  D. Hatzidimitriou,et al.  Advances in Stellar Evolution , 1997 .

[30]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[31]  Bruce W. Carney,et al.  THE CONSTANCY OF [ALPHA/FE] IN GLOBULAR CLUSTERS OF DIFFERING [FE/H] AND AGE , 1996 .

[32]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[33]  A. Walker BVI CCD Photometry of Galactic Globular Clusters. II. M68 , 1994 .

[34]  J. Tonry,et al.  SURFACE BRIGHTNESS FLUCTUATIONS IN GLOBULAR CLUSTERS AND STELLAR POPULATIONS IN GALAXIES , 1994 .

[35]  Oscar Straniero,et al.  The alpha -enhanced Isochrones and Their Impact on the FITS to the Galactic Globular Cluster System , 1993 .

[36]  Michel Casse,et al.  Origin and evolution of the elements , 1993 .

[37]  N. Grevesse,et al.  In: Origin and Evolution of the elements , 1993 .

[38]  Sandra M. Faber,et al.  MG and Fe absorption features in elliptical galaxies , 1992 .

[39]  P. Demarque,et al.  Ages of globular clusters and helium diffusion , 1992 .

[40]  B. Dorman Oxygen-enhanced models for globular cluster stars. III - Horizontal-branch sequences , 1992 .

[41]  Don A. VandenBerg,et al.  Oxygen-enhanced Models for Globular Cluster Stars. II. Isochrones and Luminosity Functions , 1992 .

[42]  M. Bessell,et al.  Subdwarf studies. IV - Abundance ratios in extremely metal-deficient stars , 1991 .

[43]  A. Weiss,et al.  The effect of enhanced alpha-elements in helium-burning Population II stars , 1989 .

[44]  V. Castellani,et al.  The 'Red Giant Clock' as an indicator for the efficiency of central mixing in horizontal-branch stars , 1989 .

[45]  Michael J. West,et al.  The globular cluster system of the Galaxy. III: measurements of radial velocity and metallicity for 60 clusters and a compilation of metallicities for 121 clusters , 1984 .

[46]  R. Kurucz,et al.  A theoretical analysis of uvby photometry. , 1978 .

[47]  David R. Alexander,et al.  Low-Temperature Rosseland Opacities , 1975 .

[48]  John P. Cox,et al.  Principles of stellar structure , 1968 .