Maximum likelihood estimate for the dispersion parameter of the negative binomial distribution

This paper shows that the maximum likelihood estimate (MLE) for the dispersion parameter of the negative binomial distribution is unique under a certain condition. A fixed-point iteration algorithm is proposed and it guarantees to converge to the MLE, when the score function has a unique root.

[1]  F. J. Anscombe,et al.  Sampling theory of the negative binomial and logarithmic series distributions. , 1950, Biometrika.

[2]  Joe N. Perry,et al.  Estimation of the Negative Binomial Parameter κ by Maximum Quasi -Likelihood , 1989 .

[3]  Fred L. Mannering,et al.  Negative binomial analysis of intersection accident frequencies , 1996 .

[4]  J. L. Folks,et al.  Complete sufficiency and maximum likelihood estimation for the two-parameter negative binomial distribution , 1986 .

[5]  C. I. Bliss,et al.  NEGATIVE BINOMIAL DISTRIBUTIONS WITH A COMMON K , 1958 .

[6]  W. Piegorsch Maximum likelihood estimation for the negative binomial dispersion parameter. , 1990, Biometrics.

[7]  C. I. Bliss,et al.  FITTING THE NEGATIVE BINOMIAL DISTRIBUTION TO BIOLOGICAL DATA AND NOTE ON THE EFFICIENT FITTING OF THE NEGATIVE BINOMIAL , 1953 .

[8]  M. Robinson,et al.  Small-sample estimation of negative binomial dispersion, with applications to SAGE data. , 2007, Biostatistics.

[9]  J. L. Folks,et al.  Multistage estimation compared with fixed-sample-size estimation of the negative binomial parameter k , 1984 .

[10]  Simon Tavaré,et al.  BayesPeak: Bayesian analysis of ChIP-seq data , 2009, BMC Bioinformatics.

[11]  Sündüz Keleş,et al.  A Statistical Framework for the Analysis of ChIP-Seq Data , 2011, Journal of the American Statistical Association.

[12]  D. A. Preece,et al.  The negative binomial distribution , 1985 .

[13]  Sudhir Paul,et al.  Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter. , 2005, Biometrics.