Face Recognition Using Heteroscedastic Weighted Kernel Discriminant Analysis
暂无分享,去创建一个
[1] A. Kai Qin,et al. Rapid and brief communication Uncorrelated heteroscedastic LDAbasedon theweightedpairwise Chernoff criterion , 2004 .
[2] Robert P. W. Duin,et al. Multiclass Linear Dimension Reduction by Weighted Pairwise Fisher Criteria , 2001, IEEE Trans. Pattern Anal. Mach. Intell..
[3] G. Baudat,et al. Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.
[4] David J. Kriegman,et al. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.
[5] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[6] Robert P. W. Duin,et al. Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[7] Azriel Rosenfeld,et al. Face recognition: A literature survey , 2003, CSUR.
[8] Carlos E. Thomaz,et al. A new covariance estimate for Bayesian classifiers in biometric recognition , 2004, IEEE Transactions on Circuits and Systems for Video Technology.
[9] Vicki Bruce,et al. Face Recognition: From Theory to Applications , 1999 .
[10] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[11] D. B. Graham,et al. Characterising Virtual Eigensignatures for General Purpose Face Recognition , 1998 .
[12] Jian Yang,et al. Essence of kernel Fisher discriminant: KPCA plus LDA , 2004, Pattern Recognit..