Computer-Aided Tool Path Optimization for Single Point Incremental Sheet Forming

Asymmetric Incremental Sheet Forming (AISF) is a new sheet metal forming process for small batch production and prototyping. In AISF, a blank is shaped by the CNC movements of a simple tool. The standard forming strategies in AISF lead to severe thinning and an inhomogeneous wall thickness distribution. In this paper, several new types of forming strategies are presented that aim at a more homogeneous distribution of material. A forming strategy suitable for computer-aided optimization was identified by finite element analyses. A “metamodel” was constructed by 162 finite element calculations in order to test different optimization algorithms off-line for their performance: a Genetic Algorithm (GA), a Particle Swarm Optimization (PSO) algorithm and the simplex search method. The GA was found to be better at detecting the global optimum but lagged behind the PSO in terms of speed.