Effect of energetic particles on pulsed magnetron sputtering of hard nanocrystalline MBCN (M = Ti, Zr, Hf) films with high electrical conductivity

[1]  J. Vlček,et al.  Dependence of structure and properties of hard nanocrystalline conductive films MBCN (M = Ti, Zr, Hf) on the choice of metal element , 2015 .

[2]  P. Zeman,et al.  Hard multifunctional Hf–B–Si–C films prepared by pulsed magnetron sputtering , 2014 .

[3]  Jiechao Jiang,et al.  A study of the microstructure evolution of hard Zr–B–C–N films by high-resolution transmission electron microscopy , 2014 .

[4]  J. Vlček,et al.  Effect of N and Zr content on structure, electronic structure and properties of ZrBCN materials: An ab-initio study , 2013 .

[5]  P. Zeman,et al.  Pulsed reactive magnetron sputtering of high-temperature Si–B–C–N films with high optical transparency , 2013 .

[6]  P. Zeman,et al.  Hard nanocrystalline Zr–B–C–N films with high electrical conductivity prepared by pulsed magnetron sputtering , 2013 .

[7]  W. Tillmann,et al.  Deposition of hard and adherent TiBCN films for cutting tools applications , 2012 .

[8]  M. Braic,et al.  (Zr,Ti)CN coatings as potential candidates for biomedical applications , 2011 .

[9]  M. Braic,et al.  Study of (Zr,Ti)CN, (Zr,Hf)CN and (Zr,Nb)CN films prepared by reactive magnetron sputtering , 2011 .

[10]  J. Vlček,et al.  Ion Flux Characteristics in Pulsed Dual Magnetron Discharges Used for Deposition of Photoactive TiO2 Films , 2011 .

[11]  W. Sproul,et al.  The structure and mechanical and tribological properties of TiBCN nanocomposite coatings , 2010 .

[12]  P. Patsalas,et al.  Stress evolution in magnetron sputtered Ti–Zr–N and Ti–Ta–N films studied by in situ wafer curvature: Role of energetic particles , 2009 .

[13]  L. Martinu,et al.  Relationships between composition and properties of (Cr/Ti)SiN and (Cr/Ti)CN alloys: an ab initio study , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  T. Welzel,et al.  Physics and phenomena in pulsed magnetrons: an overview , 2009 .

[15]  D. Depla,et al.  The metal flux from a rotating cylindrical magnetron: a Monte Carlo simulation , 2008 .

[16]  P. Zeman,et al.  Magnetron sputtered Si–B–C–N films with high oxidation resistance and thermal stability in air at temperatures above 1500 °C , 2008 .

[17]  P. Mayrhofer,et al.  Thermal stability of superhard Ti–B–N coatings , 2007 .

[18]  F. Lévy,et al.  Formation of composite ternary nitride thin films by magnetron sputtering co-deposition , 2006 .

[19]  Lars Hultman,et al.  Microstructural design of hard coatings , 2006 .

[20]  D. Mckenzie,et al.  Effect of B and the Si/C ratio on high-temperature stability of Si–B–C–N materials , 2006 .

[21]  J. Cizek,et al.  Reactive magnetron sputtering of hard Si-B-C-N films with a high-temperature oxidation resistance , 2005 .

[22]  C. Mitterer,et al.  Age hardening of PACVD TiBN thin films , 2005 .

[23]  Y. Cho,et al.  Syntheses and mechanical properties of Ti–B–C–N coatings by a plasma-enhanced chemical vapor deposition , 2004 .

[24]  Lars Hultman,et al.  Microstructural evolution during film growth , 2003 .

[25]  S. Deevi,et al.  Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review , 2003 .

[26]  Urban Wiklund,et al.  Determination of growth-induced strain and thermo-elastic properties of coatings by curvature measurements , 2002 .

[27]  P. Kelly,et al.  The distribution of ion energies at the substrate in an asymmetric bi-polar pulsed DC magnetron discharge , 2002 .

[28]  G. Mustoe,et al.  Mechanical properties of Ti–B–C–N coatings deposited by magnetron sputtering , 2001 .

[29]  S. Louie,et al.  Electronic mechanism of hardness enhancement in transition-metal carbonitrides , 1998, Nature.

[30]  S. Vepřek,et al.  A concept for the design of novel superhard coatings , 1995 .