Free energies for the homolysis of the NO-C and N-OC bonds were compared for a large number of alkoxyamines at 298 and 393 K, both in the gas phase and in toluene solution. On this basis, the scope of the N-OC homolysis side reaction in nitroxide-mediated polymerization was determined. It was found that the free energies of NO-C and N-OC homolysis are not correlated, with NO-C homolysis being more dependent upon the properties of the alkyl fragment and N-OC homolysis being more dependent upon the structure of the aminyl fragment. Acyclic alkoxyamines and those bearing the indoline functionality have lower free energies of N-OC homolysis than other cyclic alkoxyamines, with the five-membered pyrrolidine and isoindoline derivatives showing lower free energies than the six-membered piperidine derivatives. For most nitroxides, N-OC homolysis is normally favored above NO-C homolysis only when a heteroatom that is α to the NOC carbon center stabilizes the NO-C bond and/or the released alkyl radical is not sufficiently stabilized. As part of this work, accurate methods for the calculation of free energies for the homolysis of alkoxyamines were determined. Accurate thermodynamic parameters to within 4.5 kJ mol(-1) of experimental values were found using an ONIOM approximation to G3(MP2)-RAD combined with PCM solvation energies at the B3-LYP/6-31G(d) level.
[1]
W. D. Good,et al.
Thermodynamics of Organic Compounds.
,
1980
.
[2]
Yu-ran Luo.
Handbook of Bond Dissociation Energies in Organic Compounds
,
2002
.
[3]
Pluton Pullumbi,et al.
COSMO-RS, From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design
,
2006
.
[4]
G. Scuseria,et al.
Gaussian 03, Revision E.01.
,
2007
.
[5]
Wolfram Koch,et al.
A Chemist's Guide to Density Functional Theory
,
2000
.
[6]
Warren J. Hehre,et al.
AB INITIO Molecular Orbital Theory
,
1986
.
[7]
William L. Hase,et al.
Chemical kinetics and dynamics
,
1989
.