Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures.

We detail the role of single nanometric apertures milled in a gold film to enhance the fluorescence emission of Alexa Fluor 647 molecules. Combining fluorescence correlation spectroscopy and lifetime measurements, we determine the respective contributions of excitation and emission in the observed enhanced fluorescence. We characterize a broad range of nanoaperture diameters from 80 to 310 nm, and highlight the link between the fluorescence enhancement and the local photonic density of states. These results are of great interest to increase the effectiveness of fluorescence-based single molecule detection and to understand the interaction between a quantum emitter and a nanometric metal structure.

[1]  O. Muskens,et al.  Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. , 2007, Nano letters.

[2]  P. Moyer,et al.  Laser-induced fluorescence within subwavelength metallic arrays of nanoholes indicating minimal dependence on hole periodicity , 2007 .

[3]  Richard A. Soref,et al.  Practicable enhancement of spontaneous emission using surface plasmons , 2007 .

[4]  E. Fort,et al.  Surface enhanced fluorescence , 2008 .

[5]  Richard A. Keller,et al.  Single molecule detection in solution : methods and applications , 2002 .

[6]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[7]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[8]  Radiative and Nonradiative Photokinetics Alteration Inside a Single Metallic Nanometric Aperture , 2007, 0705.3353.

[9]  Hervé Rigneault,et al.  Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. , 2007, Biophysical journal.

[10]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[11]  Hervé Rigneault,et al.  Enhancement of single-molecule fluorescence detection in subwavelength apertures. , 2005, Physical review letters.

[12]  Yongxia Zhang,et al.  Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore’s structured emission , 2007 .

[13]  Glenn P. Goodrich,et al.  Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.

[14]  M. Foquet,et al.  lambda-Repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides. , 2005, Biophysical journal.

[15]  R. Rigler,et al.  Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study , 1995 .

[16]  U. Fischer,et al.  Submicrometer aperture in a thin metal film as a probe of its microenvironment through enhanced light scattering and fluorescence , 1986 .

[17]  T. Ebbesen,et al.  Nanoaperture-enhanced fluorescence : Towards higher detection rates with plasmonic metals , 2008 .

[18]  O. Martin,et al.  Confining the sampling volume for Fluorescence Correlation Spectroscopy using a sub-wavelength sized aperture. , 2006, Optics express.

[19]  Domenico Pacifici,et al.  Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters. , 2005, Nano letters.

[20]  Hervé Rigneault,et al.  Field enhancement in single subwavelength apertures. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  I. Smolyaninov,et al.  Fluorescence enhancement by surface gratings. , 2006, 2007 Quantum Electronics and Laser Science Conference.

[22]  H. Craighead,et al.  Nanofluidic structures for single biomolecule fluorescent detection. , 2007, Biopolymers.

[23]  J. Lakowicz,et al.  Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. , 2007, Nano letters.

[24]  Jerker Widengren,et al.  Characterization of Photoinduced Isomerization and Back-Isomerization of the Cyanine Dye Cy5 by Fluorescence Correlation Spectroscopy , 2000 .

[25]  Luke P. Lee,et al.  Fluorescence enhancement of quantum dots enclosed in Au nanopockets with subwavelength aperture , 2006 .

[26]  M. D. Cooper,et al.  Surface plasmon-quantum dot coupling from arrays of nanoholes. , 2006, The journal of physical chemistry. B.

[27]  Steve Blair,et al.  Fluorescence enhancement from an array of subwavelength metal apertures. , 2003, Optics letters.

[28]  T. Ebbesen,et al.  Dual-color fluorescence cross-correlation spectroscopy in a single nanoaperture : towards rapid multicomponent screening at high concentrations. , 2006, Optics express.

[29]  H. Craighead Future lab-on-a-chip technologies for interrogating individual molecules , 2006, Nature.

[30]  S. Blair,et al.  Modeling Fluorescence Enhancement from Metallic Nanocavities , 2007 .

[31]  Jerker Widengren,et al.  Triplet-state monitoring by fluorescence correlation spectroscopy , 1994, Journal of Fluorescence.

[32]  W. Barnes,et al.  Fluorescence near interfaces: The role of photonic mode density , 1998 .

[33]  I. Smolyaninov,et al.  Fluorescence enhancement by surface gratings. , 2006 .

[34]  Ulrich Hohenester,et al.  Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures , 2007 .

[35]  Jörg Enderlein,et al.  The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection. , 2005, Optics express.

[36]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[37]  Markus Sauer,et al.  Spectroscopic study and evaluation of red-absorbing fluorescent dyes. , 2003, Bioconjugate chemistry.

[38]  Joseph R Lakowicz,et al.  Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. , 2005, Analytical biochemistry.

[39]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.